Phenolic content in tea

Last updated
Most of the polyphenols in green tea are flavan-3-ols (catechins). Green tea 3 appearances.jpg
Most of the polyphenols in green tea are flavan-3-ols (catechins).

The phenolic content in tea refers to the phenols and polyphenols, natural plant compounds which are found in tea. These chemical compounds affect the flavor and mouthfeel of tea. Polyphenols in tea include catechins, theaflavins, tannins, and flavonoids.

Contents

Polyphenols found in green tea include, but are not limited to, epigallocatechin gallate (EGCG), epigallocatechin, epicatechin gallate, and epicatechin; flavanols such as kaempferol, quercetin, and myricitin are also found in green tea. [1]

Catechins

Green tea UV 280 nm chromatogram. Highest peak is caffeine, second highest is EGCG Green tea UV 280 nm spectrum.png
Green tea UV 280 nm chromatogram. Highest peak is caffeine, second highest is EGCG

Catechins include epigallocatechin-3-gallate (EGCG), epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), catechin, and gallocatechin (GC). The content of EGCG is higher in green tea. [2]

Catechins constitute about 25% of the dry mass of a fresh tea leaf, [3] although total catechin content varies widely depending on species, clonal variation, growing location, season, light variation, and altitude. They are present in nearly all teas made from Camellia sinensis , including white tea, green tea, black tea and oolong tea.

A 2011 analysis by the European Food Safety Authority found that a cause and effect relationship could not be shown for a link between tea catechins and the maintenance of normal blood LDL-cholesterol concentration. [4]

4-Hydroxybenzoic acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), 3-methoxy-4-hydroxy-hippuric acid and 3-methoxy-4-hydroxybenzoic acid (vanillic acid) are the main catechins metabolites found in humans after consumption of green tea infusions. [5]

Theaflavins

Darjeeling black tea infusion: Finer black tea has a more orange tone than red as a result of higher theaflavins content. Darjeeling-tea-first-flush-in-cup.jpg
Darjeeling black tea infusion: Finer black tea has a more orange tone than red as a result of higher theaflavins content.

Catechin monomer structures are metabolized into dimers theaflavins and oligomers thearubigins with increasing degrees of oxidation of tea leaves. [6] Theaflavins contribute to the bitterness and astringency of black tea. The mean amount of theaflavins in a cup of black tea (200 ml) is 12.18 mg. [7]

Three main types of theaflavins are found in black tea, namely theaflavin (TF-1), theaflavin-3-gallate (TF-2), and theaflavin-3,3-digallate (TF-3). [8]

Tannins

Tannins are astringent, bitter polyphenolic compounds that bind to and precipitate organic compounds. Gallic acid conjugates all of the catechins, such as EGCG (Epigallocatechin gallate), which are tannins with astringent qualities. [9]

Flavonoids

Phenols called flavonoids are under preliminary research, as of 2020, but there is no evidence that flavonoids have antioxidant activity in vivo, or affect physical health or diseases. [10] [11] Tea has one of the highest contents of flavonoids among common food and beverage products. [7] Catechins are the largest type of flavonoids in growing tea leaves. [6] According to a report released by USDA, in a 200-ml cup of tea, the mean total content of flavonoids is 266.68 mg for green tea, and 233.12 mg for black tea. [7]

Research

A 2020 review found low- to moderate-quality evidence that daily tea consumption might lower the risk for cardiovascular disease and death. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Green tea</span> Unoxidized tea

Green tea is a type of tea that is made from Camellia sinensis leaves and buds that have not undergone the same withering and oxidation process which is used to make oolong teas and black teas. Green tea originated in China, and since then its production and manufacture has spread to other countries in East Asia.

<span class="mw-page-title-main">Gallic acid</span> 3,4,5-Trihydroxybenzoic acid

Gallic acid (also known as 3,4,5-trihydroxybenzoic acid) is a trihydroxybenzoic acid with the formula C6H2(OH)3CO2H. It is classified as a phenolic acid. It is found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. It is a white solid, although samples are typically brown owing to partial oxidation. Salts and esters of gallic acid are termed "gallates".

<span class="mw-page-title-main">Flavonoid</span> Class of plant and fungus secondary metabolites

Flavonoids are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.

<span class="mw-page-title-main">Flavan-3-ol</span> Category of polyphenol compound

Flavan-3-ols are a subgroup of flavonoids. They are derivatives of flavans that possess a 2-phenyl-3,4-dihydro-2H-chromen-3-ol skeleton. Flavan-3-ols are structurally diverse and include a range of compounds, such as catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins, thearubigins. They play a part in plant defense and are present in the majority of plants.

<span class="mw-page-title-main">Polyphenol</span> Class of chemical compounds

Polyphenols are a large family of naturally occurring phenols They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

<span class="mw-page-title-main">Catechin</span> Type of natural phenol as a plant secondary metabolite

Catechin is a flavan-3-ol, a type of secondary metabolite providing antioxidant roles in plants. It belongs to the subgroup of polyphenols called flavonoids.

Oxygen radical absorbance capacity (ORAC) was a method of measuring antioxidant capacities in biological samples in vitro. Because no physiological proof in vivo existed in support of the free-radical theory or that ORAC provided information relevant to biological antioxidant potential, it was withdrawn in 2012.

Proanthocyanidins are a class of polyphenols found in many plants, such as cranberry, blueberry, and grape seeds. Chemically, they are oligomeric flavonoids. Many are oligomers of catechin and epicatechin and their gallic acid esters. More complex polyphenols, having the same polymeric building block, form the group of tannins.

<span class="mw-page-title-main">Antioxidant effect of polyphenols and natural phenols</span>

A polyphenol antioxidant is a hypothetical type of antioxidant containing a polyphenolic substructure and studied in vitro. Numbering over 4,000 distinct species mostly from plants, polyphenols may have antioxidant activity in vitro, but are unlikely to be antioxidants in vivo. Hypothetically, they may affect cell-to-cell signaling, receptor sensitivity, inflammatory enzyme activity or gene regulation, although high-quality clinical research has not confirmed any of these possible effects in humans as of 2020.

<span class="mw-page-title-main">Procyanidin</span>

Procyanidins are members of the proanthocyanidin class of flavonoids. They are oligomeric compounds, formed from catechin and epicatechin molecules. They yield cyanidin when depolymerized under oxidative conditions.

<span class="mw-page-title-main">Epigallocatechin gallate</span> Catechin (polyphenol) in tea

Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is the ester of epigallocatechin and gallic acid, and is a type of catechin.

<span class="mw-page-title-main">Theaflavin digallate</span> Chemical compound

Theaflavin digallate (TFDG) is an antioxidant natural phenol found in black tea, and a theaflavin derivative.

<span class="mw-page-title-main">Olive leaf</span>

Olive leaf is the leaf of the olive tree. Although olive oil is well known for its flavor and possible health benefits, the leaf and its extracts remain under preliminary research with unknown effects on human health.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<span class="mw-page-title-main">Prodelphinidin</span>

Prodelphinidin is a name for the polymeric tannins composed of gallocatechin. It yields delphinidin during depolymerisation under oxidative conditions.

A type proanthocyanidins are a specific type of proanthocyanidins, which are a class of flavonoid. Proanthocyanidins fall under a wide range of names in the nutritional and scientific vernacular, including oligomeric proanthocyanidins, flavonoids, polyphenols, condensed tannins, and OPCs. Proanthocyanidins were first popularized by French scientist Jacques Masquelier.

<span class="mw-page-title-main">Epicatechin gallate</span> Chemical compound

Epicatechin gallate (ECG) is a flavan-3-ol, a type of flavonoid, present in green tea. It is also reported in buckwheat and in grape.

<span class="mw-page-title-main">Gallocatechin gallate</span> Chemical compound

Gallocatechin gallate (GCG) is the ester of gallocatechin and gallic acid and a type of catechin. It is an epimer of epigallocatechin gallate (EGCG).

<span class="mw-page-title-main">Naturally occurring phenols</span> Group of chemical compounds

In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.

References

  1. Khan N, Mukhtar H (2013). "Tea and health: studies in humans". Current Pharmaceutical Design (Literature Review). 19 (34): 6141–7. doi:10.2174/1381612811319340008. PMC   4055352 . PMID   23448443.
  2. Thermo Scientific (Dionex) Application Note 275. Sensitive Determination of Catechins in Tea by HPLC . Retrieved 3 August 2013.
  3. Balentine DA, Harbowy ME, Graham HN (1998). "Tea: the Plant and its Manufacture; Chemistry and Consumption of the Beverage". In Spiller GA (ed.). Caffeine. Boca Raton: CRC Press. p. 35. ISBN   978-0-8493-2647-9.
  4. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2011). "Scientific Opinion on the substantiation of health claims related to Camellia sinensis (L.) Kuntze (tea), including catechins in green tea, and improvement of endothelium-dependent vasodilation (ID 1106, 1310), maintenance of normal blood pressure". EFSA Journal. 9 (4): 2055. doi: 10.2903/j.efsa.2011.2055 .
  5. Pietta, P. G.; Simonetti, P.; Gardana, C.; Brusamolino, A.; Morazzoni, P.; Bombardelli, E. (1998). "Catechin metabolites after intake of green tea infusions". BioFactors. 8 (1–2): 111–8. doi:10.1002/biof.5520080119. PMID   9699018. S2CID   37684286.
  6. 1 2 Peterson, J.; Dwyer, J.; Bhagwat, S.; Haytowitz, D.; Holden, J.; Eldridge, A.L.; Beecher, G.; Aladesanmi, J. (2005). "Major flavonoids in dry tea". Journal of Food Composition and Analysis. 18 (6): 487–501. doi:10.1016/j.jfca.2004.05.006. hdl:10113/7266.
  7. 1 2 3 U.S. Department of Agriculture, USDA Database for the Flavonoid Content of Selected Foods, Release 2.1, January 2007[ non-primary source needed ]
  8. Del Rio, Daniele; Stewart, Amanda J.; Mullen, William; Burns, Jennifer; Lean, Michael E. J.; Brighenti, Furio; Crozier, Alan (2004). "HPLC-MSnAnalysis of Phenolic Compounds and Purine Alkaloids in Green and Black Tea". Journal of Agricultural and Food Chemistry. 52 (10): 2807–15. doi:10.1021/jf0354848. PMID   15137818.
  9. Crozier, Alan; Jaganath, Indu B.; Clifford, Michael N. (2009). "Dietary phenolics: Chemistry, bioavailability and effects on health". Natural Product Reports. 26 (8): 1001–43. CiteSeerX   10.1.1.608.4407 . doi:10.1039/b802662a. PMID   19636448.
  10. "Flavonoids". Linus Pauling Institute, Oregon State University, Corvallis. 2016. Retrieved 2020-04-15.
  11. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)2, 3 European Food Safety Authority (EFSA), Parma, Italy (2010). "Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) and protection of cells from premature aging, antioxidant activity, antioxidant content and antioxidant properties, and protection of DNA, proteins and lipids from oxidative damage pursuant to Article 13(1) of Regulation (EC) No 1924/20061". EFSA Journal. 8 (2): 1489. doi: 10.2903/j.efsa.2010.1489 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Chung, Mei; Zhao, Naisi; Wang, Deena; Shams-White, Marissa; Karlsen, Micaela; Cassidy, Aedín; Ferruzzi, Mario; Jacques, Paul F.; Johnson, Elizabeth J.; Wallace, Taylor C. (19 February 2020). "Dose–Response Relation between Tea Consumption and Risk of Cardiovascular Disease and All-Cause Mortality: A Systematic Review and Meta-Analysis of Population-Based Studies". Advances in Nutrition. 11 (4): 790–814. doi: 10.1093/advances/nmaa010 . PMC   7360449 . PMID   32073596.