Phyllodium pulchellum

Last updated

Phyllodium pulchellum
Phyllodium pulchellum-2-sekar coffee-yercaud-salem-India (1).jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Fabales
Family: Fabaceae
Subfamily: Faboideae
Tribe: Desmodieae
Genus: Phyllodium
Species:
P. pulchellum
Binomial name
Phyllodium pulchellum
Synonyms
  • Desmodium pulchellum (L.) Benth.
  • Hedysarum pulchellum L. (basionym)
  • Meibomia pulchella (L.)

Phyllodium pulchellum is an Asian plant in the family Fabaceae.

Contents

Distribution and habitat

Phyllodium pulchellum is widely distributed in tropical Asia and also in the Ryukyu Islands, Taiwan and Australia's Northern Territory. [1]

Medicinal

Traditional

In Bangladesh, a bark decoction is used for hemorrhage, diarrhea, poisoning and eye diseases. Flowers are used in biliousness. [2]

Chemical composition

Plant: Bufotenin and its methyl ether, DMT and its oxides, two tryptamine derivatives, gramine, 15 indole-3-alkylamine, tryptophan bases, β-carbolines

Seeds: Galactomannan, L-glucosyl rhamnoside of physcion

Roots: Betulin, α-amyrin, β-sitosterol [2]

The alkaloids are mainly of three broad structural types, i.e. indole-3-alkylamine, beta-carbolines, and tetrahydro-β-carboline. [2]

Related Research Articles

<i>Banisteriopsis caapi</i> Species of plant

Banisteriopsis caapi, also known as, caapi, soul vine, or yagé (yage), is a South American liana of the family Malpighiaceae. It is commonly used as an ingredient of ayahuasca, a decoction with a long history of its entheogenic use and its status as a "plant teacher" among the Indigenous peoples of the Amazon rainforest.

<span class="mw-page-title-main">Tryptophan synthase</span>

Tryptophan synthase or tryptophan synthetase is an enzyme that catalyses the final two steps in the biosynthesis of tryptophan. It is commonly found in Eubacteria, Archaebacteria, Protista, Fungi, and Plantae. However, it is absent from Animalia. It is typically found as an α2β2 tetramer. The α subunits catalyze the reversible formation of indole and glyceraldehyde-3-phosphate (G3P) from indole-3-glycerol phosphate (IGP). The β subunits catalyze the irreversible condensation of indole and serine to form tryptophan in a pyridoxal phosphate (PLP) dependent reaction. Each α active site is connected to a β active site by a 25 angstrom long hydrophobic channel contained within the enzyme. This facilitates the diffusion of indole formed at α active sites directly to β active sites in a process known as substrate channeling. The active sites of tryptophan synthase are allosterically coupled.

β-Carboline Chemical compound also known as norharmane

β-Carboline (9H-pyrido[3,4-b]indole) represents the basic chemical structure for more than one hundred alkaloids and synthetic compounds. The effects of these substances depend on their respective substituent. Natural β-carbolines primarily influence brain functions but can also exhibit antioxidant effects. Synthetically designed β-carboline derivatives have recently been shown to have neuroprotective, cognitive enhancing and anti-cancer properties.

<i>Phalaris arundinacea</i> Species of Plant

Phalaris arundinacea, or reed canary grass, is a tall, perennial bunchgrass that commonly forms extensive single-species stands along the margins of lakes and streams and in wet open areas, with a wide distribution in Europe, Asia, northern Africa and North America. Other common names for the plant include gardener's-garters and ribbon grass in English, alpiste roseau in French, Rohrglanzgras in German, kusa-yoshi in Japanese, caniço-malhado in Portuguese, and hierba cinta and pasto cinto in Spanish.

<span class="mw-page-title-main">Harmala alkaloid</span> Group of chemical compounds

Harmala alkaloids are several alkaloids that increase effects of reward system neurotransmitter dopamine by acting as monoamine oxidase inhibitors (MAOIs). These alkaloids are found in the seeds of Peganum harmala, as well as leaves of tobacco and coffee beans. The alkaloids include harmine, harmaline, harmalol, and their derivatives, which have similar chemical structures, hence the name "harmala alkaloids". These alkaloids are of interest for their use in Amazonian shamanism, where they are derived from other plants. Harmine, once known as telepathine and banisterine, is a naturally occurring beta-carboline alkaloid that is structurally related to harmaline, and also found in the vine Banisteriopsis caapi. Tetrahydroharmine is also found in B. caapi and P. harmala. Dr. Alexander Shulgin has suggested that harmine may be a breakdown product of harmaline. Harmine and harmaline are reversible inhibitors of monoamine oxidase A (RIMAs). They can stimulate the central nervous system by inhibiting the metabolism of monoamine compounds such as serotonin and norepinephrine.

<i>Lepidium meyenii</i> Plant species native to South America grown for its edible fleshy hypocotyl

Lepidium meyenii, known as maca or Peruvian ginseng, is an edible herbaceous biennial plant of the family Brassicaceae that is native to South America in the high Andes mountains of Peru and Bolivia. It was rediscovered for commercial purposes at the Meseta de Bombón plateau close to Lake Junin in the late 1980s. It is grown for its fleshy hypocotyl that is fused with a taproot, which is typically dried, but may also be freshly cooked as a root vegetable. As a cash crop, it is primarily exported as a powder that may be raw, or processed further as a gelatinized starch or as an extract. If dried, it may be processed into a flour for baking or as a dietary supplement.

Harmine is a beta-carboline and a harmala alkaloid. It occurs in a number of different plants, most notably the Syrian rue and Banisteriopsis caapi. Harmine reversibly inhibits monoamine oxidase A (MAO-A), an enzyme which breaks down monoamines, making it a Reversible inhibitor of monoamine oxidase A (RIMA). Harmine does not inhibit MAO-B. Harmine is also known as banisterin, banisterine, telopathin, telepathine, leucoharmine and yagin, yageine.

<span class="mw-page-title-main">Harmaline</span> Chemical compound

Harmaline is a fluorescent indole alkaloid from the group of harmala alkaloids and beta-carbolines. It is the partly hydrogenated form of harmine.

The Pictet–Spengler reaction is a chemical reaction in which a β-arylethylamine undergoes condensation with an aldehyde or ketone followed by ring closure. The reaction was first discovered in 1911 by Amé Pictet and Theodor Spengler. Traditionally, an acidic catalyst in protic solvent was employed with heating; however, the reaction has been shown to work in aprotic media in superior yields and sometimes without acid catalysis. The Pictet–Spengler reaction can be considered a special case of the Mannich reaction, which follows a similar reaction pathway. The driving force for this reaction is the electrophilicity of the iminium ion generated from the condensation of the aldehyde and amine under acid conditions. This explains the need for an acid catalyst in most cases, as the imine is not electrophilic enough for ring closure but the iminium ion is capable of undergoing the reaction.

<i>Desmodium</i> Genus of legumes

Desmodium is a genus of plants in the legume family Fabaceae, sometimes called tick-trefoil, tick clover, hitch hikers or beggar lice. There are dozens of species and the delimitation of the genus has shifted much over time. Species are distributed widely – from Quebec to northern Argentina in the Americas, across northern and southern tropical Africa, in the southern Arabian Peninsula, in Myanmar and Thailand, New Guinea, and northern and eastern Australia.

<span class="mw-page-title-main">Indole alkaloid</span> Class of alkaloids

Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.

<span class="mw-page-title-main">DMCM</span> Chemical compound

DMCM is a drug from the β-carboline family that induces anxiety and convulsions by acting as a negative allosteric modulator of GABAA receptors — functionally opposite to benzodiazepines and related drugs which are positive allosteric modulators — and is used in scientific research for these properties to test new anxiolytic and anticonvulsant medications, respectively. It has also been shown to produce analgesic effects in animals, which is thought to be the drug's induced panic reducing the perception of pain.

<i>Acacia simplex</i> Species of plant

Acacia simplex is a perennial climbing tree native to islands in the western part of the Pacific Ocean as far east as Savaiʻi. It is also found in Argentina. This tree grows up to 12 m in height.

<span class="mw-page-title-main">7-Hydroxymitragynine</span> Alkaloid analgesic compound

7-Hydroxymitragynine (7-OH) is a terpenoid indole alkaloid from the plant Mitragyna speciosa, commonly known as kratom. It was first described in 1994 and is a natural product derived from the mitragynine present in the kratom leaf. 7-OH binds to opioid receptors like mitragynine, but research suggests that 7-OH binds with greater potency.

<span class="mw-page-title-main">Tetrahydroharman</span> Chemical compound

Tetrahydroharman(e), also known as 1-methyl-1,2,3,4-tetrahydro-β-carboline, is a general name for one of two isomers:

  1. (1S)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole
  2. Calligonine ((1R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole)
<span class="mw-page-title-main">ZK-93426</span> Chemical compound

ZK-93426 (ethyl-5-isopropoxy-4-methyl-beta-carboline-3-carboxylate) is a drug from the beta-carboline family. It acts as a weak partial inverse agonist of benzodiazepine receptors, meaning that it causes the opposite effects to the benzodiazepine class of drugs and has anxiogenic properties, although unlike most benzodiazepine antagonists it is not a convulsant and actually has weak anticonvulsant effects. In human tests it produced alertness, restlessness and feelings of apprehension, and reversed the effect of the benzodiazepine lormetazepam. It was also shown to produce nootropic effects and increased release of acetylcholine.

<span class="mw-page-title-main">Harmane</span> Chemical compound

Harmane (harman) is a heterocyclic amine found in a variety of foods including coffee, sauces, and cooked meat. It is also present in tobacco smoke.

<span class="mw-page-title-main">Eudistomin</span>

Eudistomins are β-carboline derivatives, isolated from ascidians, like Ritterella sigillinoides, Lissoclinum fragile, or Pseudodistoma aureum.

γ-Carboline Chemical compound

γ-Carboline (5H-pyrido[4,3-b]indole), is a nitrogen containing heterocycle. A large number of derivatives are known with varying pharmacological properties.

References

  1. 1 2 "Phyllodium pulchellum". Germplasm Resources Information Network . Agricultural Research Service, United States Department of Agriculture . Retrieved 2008-04-30.
  2. 1 2 3 Velmurugan, Gopal; S. P, Anand (2018-04-17). "Phyllodium pulchellum: A Potential medicinal plant - A review" via ResearchGate.