Piccaninny crater

Last updated
Piccaninny crater
Piccaninny crater Western Australia.jpg
Landsat image of the deeply eroded remnant of Piccaninny crater (circular feature in centre); screen capture from the NASA World Wind program
Impact crater/structure
ConfidenceConfirmed
Diameter7 km (4.3 mi)
Age <360 Ma
<Devonian
ExposedYes
DrilledNo
Location
Location Purnululu (Bungle Bungle) National Park
Coordinates 17°25′30″S128°26′10″E / 17.42500°S 128.43611°E / -17.42500; 128.43611 Coordinates: 17°25′30″S128°26′10″E / 17.42500°S 128.43611°E / -17.42500; 128.43611
Country Australia
State Western Australia
Australia Western Australia location map.svg
Map pointer.svg
Location of the crater in Western Australia
Oblique Landsat image draped over digital elevation data (x3 vertical exaggeration), eroded remnant of Piccaninny crater (circular feature in centre); screen capture from the NASA World Wind program Piccaninny crater oblique Western Australia.jpg
Oblique Landsat image draped over digital elevation data (x3 vertical exaggeration), eroded remnant of Piccaninny crater (circular feature in centre); screen capture from the NASA World Wind program

Piccaninny crater is an impact structure, the eroded remnant of a former impact crater, situated in northern Western Australia in the Kimberley region. It was named after Piccaninny Creek and lies within the Purnululu (Bungle Bungle) National Park. [1]

Description

The site is marked by a circular topographic feature on top of the flat-topped sandstone and conglomerate Bungle Bungle Range, clearly visible on remotely sensed images. [2] When first reported in 1983 after aerial observation, it was interpreted as either an impact structure or a cryptovolcanic feature. [3] Later ground examination by E.M. and C.S. Shoemaker confirmed the presence of types of deformation confirming an impact origin. [4]

The circular topographic feature is 7 km in diameter, although due to the amount of erosion the original crater may have been larger. It has been estimated that the present land surface is 1–2 km below the original crater floor. [4] The impact event has not been dated, and must be younger than the Devonian age of the rocks in the area, but is clearly not recent because of the amount of erosion.

Related Research Articles

Impact crater Circular depression on a solid astronomical body formed by a smaller objects impact

An impact crater is a depression in the surface of a planet, moon, or other solid body in the Solar System or elsewhere, formed by the hypervelocity impact of a smaller body. In contrast to volcanic craters, which result from explosion or internal collapse, impact craters typically have raised rims and floors that are lower in elevation than the surrounding terrain. Lunar impact craters range from microscopic craters on lunar rocks returned by the Apollo Program and small, simple, bowl-shaped depressions in the lunar regolith to large, complex, multi-ringed impact basins. Meteor Crater is a well-known example of a small impact crater on Earth.

Meteor Crater Meteorite impact crater in northern Arizona

Meteor Crater, or Barringer Crater, is a meteorite impact crater about 37 mi (60 km) east of Flagstaff and 18 mi (29 km) west of Winslow in the desert of northern Arizona, United States. The site had several earlier names, and fragments of the meteorite are officially called the Canyon Diablo Meteorite, after the adjacent Cañon Diablo. Because the United States Board on Geographic Names recognizes names of natural features derived from the nearest post office, the feature acquired the name of "Meteor Crater" from the nearby post office named Meteor.

Chesapeake Bay impact crater Impact crater

The Chesapeake Bay impact crater was formed by a bolide that impacted the eastern shore of North America about 35.5 ± 0.3 million years ago, in the late Eocene epoch. It is one of the best-preserved "wet-target" impact craters in the world.

Manicouagan Reservoir Lake in Quebec, Canada

Manicouagan Reservoir is an annular lake in central Quebec, Canada, covering an area of 1,942 km2 (750 sq mi). The lake island in its centre is known as René-Levasseur Island, and its highest point is Mount Babel. The structure was created 214 (±1) million years ago, in the Late Triassic, by the impact of a meteorite 5 km (3 mi) in diameter. The lake and island are clearly seen from space and are sometimes called the "eye of Quebec". The lake has a volume of 137.9 km3 (33.1 cu mi).

Bungle Bungle Range Geological feature in Kimberley region in Western Australia

The Bungle Bungle Range is a major landform and the main feature of the Purnululu National Park, situated in the Kimberley region of Western Australia.

Acraman crater

Acraman crater is a deeply eroded impact crater in the Gawler Ranges of South Australia. Its location is marked by Lake Acraman, a circular ephemeral playa lake about 20 kilometres (12 mi) in diameter. The discovery of the crater and independent discovery of its ejecta were first reported in the journal Science in 1986. The evidence for impact includes the presence of shatter cones and shocked quartz in shattered bedrock on islands within Lake Acraman.

Connolly Basin crater Impact crater in Western Australia

Connolly Basin is a 9 km-diameter impact crater located in the Gibson Desert of central Western Australia. It lies adjacent to the Talawana Track 45 km west of the junction with the Gary Highway, but is difficult to access due to the remoteness of the area. It was originally thought to be a diapir ; an impact origin was first proposed in 1985.,

Gosses Bluff crater

Gosses Bluff is thought to be the eroded remnant of an impact crater. Known as Tnorala to the Western Arrernte people of the surrounding region, it is located in the southern Northern Territory, near the centre of Australia, about 175 km (109 mi) west of Alice Springs and about 212 km (132 mi) to the northeast of Uluru. It was named by Ernest Giles in 1872 after Australian explorer William Gosse's brother Henry, who was a member of William's expedition.

Mount Toondina crater

Mount Toondina crater is an impact structure, the eroded remnant of a former impact crater, located in northern South Australia in the locality of Allandale Station about 24 km (15 mi) south of the town of Oodnadatta. Mount Toondina is the high point of a circular topographic feature rising out of an otherwise relatively flat desert area of the Eromanga Basin. An impact origin was first suggested in 1976, challenging the earlier diapir hypothesis, and strongly supported by subsequent studies. A geophysical survey using gravity methods indicates an internal structure typical of complex impact craters, including an uplifted centre, and suggests that the original crater was about 3–4 km in diameter. The crater must be younger than the Early Cretaceous age of the rocks in which it is situated, but otherwise is not well dated. It has clearly undergone significant erosion since the impact event.

Shoemaker crater Impact structure in Western Australia

Shoemaker is an impact structure, the deeply eroded remnant of a former impact crater, situated in arid central Western Australia, about 100 km (62 mi) north-northeast of Wiluna. It is named in honour of planetary geologist Eugene Shoemaker.

Spider crater Impact crater in Western Australia

Spider is an impact structure, the deeply eroded remnant of a former impact crater, situated in the Kimberley region of northern Western Australia, 18 km east of the Mount Barnett Roadhouse on the Gibb River Road. Due to very rugged terrain the site is effectively inaccessible. The name is derived from the visually striking spider-like radiating ridges of quartzite prominently visible from the air or on satellite images.

Strangways crater

Strangways is a large impact structure, the eroded remnant of a former impact crater, located in the Northern Territory of Australia about 65 kilometres (40 mi) east-south-east of the town of Mataranka. It was named after the nearby Strangways River. The location is remote and difficult to access. Its age has been determined as approximately 646 Ma.

Upheaval Dome Geological feature in Utah, United States

Upheaval Dome is an enigmatic geological structure in San Juan County, Utah, United States, that has been variously interpreted as a meteorite impact structure or a salt dome. The structure lies 22 miles (35 km) southwest of the city of Moab, Utah, in the Island in the Sky section of Canyonlands National Park.

Vredefort crater Largest verified impact crater on Earth, about 2 billion years old

The Vredefort crater is the largest verified impact crater on Earth. It was 160–300 km (100–200 mi) across when it was formed; and what remains of it is in the present-day Free State province of South Africa. It is named after the town of Vredefort, which is near its centre. Although the crater itself has long since been eroded away, the remaining geological structures at its centre are known as the Vredefort Dome or Vredefort impact structure. The crater is calculated to be 2.023 billion years old, with impact being in the Paleoproterozoic Era. It is the second-oldest known crater on Earth, after Yarrabubba crater.

Kebira Crater

Kebira Crater is the name given to a circular topographic feature that was identified in 2007 by Farouk El-Baz and Eman Ghoneim using satellite imagery, Radarsat-1, and Shuttle Radar Topography Mission (SRTM) data in the Sahara desert. This feature straddles the border between Egypt and Libya. The name of this feature is derived from the Arabic word for "large", and also from its location near the Gilf Kebir region in southwest Egypt. Based solely on their interpretations of the remote sensing data, they argue that this feature is an exceptionally large, double-ringed, extraterrestrial impact crater. They suggest that the crater's original appearance has been obscured by wind and water erosion over time. Finally, they speculated that this feature might be the source of the yellow-green silica glass fragments, known as "Libyan desert glass", that can be found across part of Egypt's Libyan Desert. They neither conducted any fieldwork at this feature nor studied any samples collected from it. However, the Kebira Crater is currently not listed in the Earth Impact Database. Field trips to investigate the feature have found no supporting evidence. The "central uplift" clearly retains the horizontal bedding of the surrounding sandstone tableland, providing clear evidence against a possible impact origin.

Cleopatra (crater)

Cleopatra, initially called Cleopatra Patera, is an impact crater on Venus, in Maxwell Montes.

Impact structure Geologic structure formed from impact on a planetary surface

An impact structure is a generally circular or craterlike geologic structure of deformed bedrock or sediment produced by impact on a planetary surface, whatever the stage of erosion of the structure. In contrast, an impact crater is the surface expression of an impact structure. In many cases, on Earth, the impact crater has been destroyed by erosion, leaving only the deformed rock or sediment of the impact structure behind. This is the fate of almost all old impact craters on Earth, unlike the ancient pristine craters preserved on the Moon and other geologically inactive rocky bodies with old surfaces in the Solar System. Impact structure is synonymous with the less commonly used term astrobleme meaning "star wound".

Tolstoj (crater) Crater on Mercury

Tolstoj is a large, ancient impact crater on Mercury. It was named after Leo Tolstoy. The albedo feature Solitudo Maiae appears to be associated with this crater.

Beethoven quadrangle Quadrangle on Mercury

The Beethoven quadrangle is located in the equatorial region of Mercury, in the center of the area imaged by Mariner 10. Most pictures of the quadrangle were obtained at high sun angles as the Mariner 10 spacecraft receded from the planet. Geologic map units are described and classified on the basis of morphology, texture, and albedo, and they are assigned relative ages based on stratigraphic relations and on visual comparisons of the density of superposed craters. Crater ages are established by relative freshness of appearance, as indicated by topographic sharpness of their rim crests and degree of preservation of interior and exterior features such as crater floors, walls, and ejecta aprons. Generally, topography appears highly subdued because of the sun angle, and boundaries between map units are not clearly defined.

Surface features of Venus

The surface of Venus is dominated by geologic features that include volcanoes, large impact craters, and aeolian erosion and sedimentation landforms. Venus has a topography reflecting its single, strong crustal plate, with a unimodal elevation distribution that preserves geologic structures for long periods of time. Studies of the Venusian surface are based on imaging, radar, and altimetry data collected from several exploratory space probes, particularly Magellan, since 1961. Despite its similarities to Earth in size, mass, density, and possibly composition, Venus has a unique geology that is unlike Earth's. Although much older than Earth's, the surface of Venus is relatively young compared to other terrestrial planets, possibly due to a global-scale resurfacing event that buried much of the previous rock record. Venus is believed to have approximately the same bulk elemental composition as Earth, due to the physical similarities, but the exact composition is unknown. The surface conditions on Venus are more extreme than on Earth, with temperatures ranging from 453 to 473 °C and pressures of 95 bar. Venus lacks water, which makes crustal rock stronger and helps preserve surface features. The features observed provide evidence for the geological processes at work. Twenty feature types have been categorized thus far. These classes include local features, such as craters, coronae, and undae, as well as regional-scale features, such as planitiae, plana, and tesserae.

References

  1. "Piccaninny". Earth Impact Database . Planetary and Space Science Centre University of New Brunswick Fredericton . Retrieved 2009-08-19.
  2. https://maps.google.com/maps?q=Australia&ie=UTF8&om=1&z=12&ll=-17.421408,128.444939&spn=0.128409,0.342636&t=k Google Maps image
  3. Beere GM (1983). "The Piccaninny structure – a cryptoexplosive feature in the Ord Basin, East Kimberly". Geological Survey of Western Australia Record. 1983/6. GSWA download search Archived 2009-07-13 at the Wayback Machine
  4. 1 2 Shoemaker EM, Shoemaker CS (1985). "Impact structures of Western Australia". Meteoritics. 20: 754–756. PDF