Point-finite collection

Last updated

In mathematics, a collection of subsets of a topological space is said to be point-finite if every point of lies in only finitely many members of . [1]

A topological space in which every open cover admits a point-finite open refinement is called metacompact. Every locally finite collection of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called paracompact. Every paracompact space is therefore metacompact. [1]

Related Research Articles

Compact space Topological notions of all points being "close"

In mathematics, more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed and bounded. Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways.

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:

In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. The data can be restricted to smaller open sets, and the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original one. For example, such data can consist of the rings of continuous or smooth real-valued functions defined on each open set. Sheaves are by design quite general and abstract objects, and their correct definition is rather technical. They are variously defined, for example, as sheaves of sets or sheaves of rings, depending on the type of data assigned to open sets.

In mathematics, particularly topology, a cover of a set is a collection of sets whose union includes as a subset. Formally, if is an indexed family of sets , then is a cover of if

In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space is second-countable if there exists some countable collection of open subsets of such that any open subset of can be written as a union of elements of some subfamily of . A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have.

In mathematics, specifically in the study of topology and open covers of a topological space X, a star refinement is a particular kind of refinement of an open cover of X.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space which is invariant under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In topology, a branch of mathematics, a topological manifold is a topological space which locally resembles real n-dimensional space in a sense defined below. Topological manifolds form an important class of topological spaces with applications throughout mathematics. All manifolds are topological manifolds by definition, but many manifolds may be equipped with additional structure. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" any additional structure the manifold has.

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.

In mathematics, especially functional analysis, a bornology on a set X is a collection of subsets of X satisfying axioms that generalize the notion of boundedness.

In mathematics, a topological space is called collectionwise normal if for every discrete family Fi of closed subsets of there exists a pairwise disjoint family of open sets Ui, such that FiUi. A family of subsets of is called discrete when every point of has a neighbourhood that intersects at most one of the sets from . An equivalent definition demands that the above Ui are themselves a discrete family, which is stronger than pairwise disjoint.

In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension.

In mathematics, a Hurewicz space is a topological space that satisfies a certain basic selection principle that generalizes σ-compactness. A Hurewicz space is a space in which for every sequence of open covers of the space there are finite sets such that every point of the space belongs to all but finitely many sets .

In mathematics, Kolmogorov's normability criterion is a theorem that provides a necessary and sufficient condition for a topological vector space to be normable, i.e. for the existence of a norm on the space that generates the given topology. The normability criterion can be seen as a result in same vein as the Nagata–Smirnov metrization theorem, which gives a necessary and sufficient condition for a topological space to be metrizable. The result was proved by the Russian mathematician Andrey Nikolayevich Kolmogorov in 1934.

References

  1. 1 2 Willard, Stephen (2012), General Topology, Dover Books on Mathematics, Courier Dover Publications, pp. 145–152, ISBN   9780486131788 .


This article incorporates material from point finite on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.