Prothioconazole

Last updated
Prothioconazole
Prothioconazole.png
Prothioconazole x.gif
Names
IUPAC name
2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-1H-1,2,4-triazole-3-thione
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.114.615 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 605-841-2
PubChem CID
UNII
  • InChI=1S/C14H15Cl2N3OS/c15-11-4-2-1-3-10(11)7-14(20,13(16)5-6-13)8-19-12(21)17-9-18-19/h1-4,9,20H,5-8H2,(H,17,18,21)
    Key: MNHVNIJQQRJYDH-UHFFFAOYSA-N
  • C1CC1(C(CC2=CC=CC=C2Cl)(CN3C(=S)N=CN3)O)Cl
Properties
C14H15Cl2N3OS
Molar mass 344.2 g/mol
Appearancewhite crystalline powder [1]
Density 1.36 g/cm3 [2]
Melting point 139.1–144.5 °C (282.4–292.1 °F; 412.2–417.6 K) [2]
Boiling point 437-537°C Decomposes at 222°C [2]
300 mg/L at 20 °C [2]
Solubility soluble in acetone, polyethylene glycol, esters [2]
Vapor pressure 3 × 10−7 mm Hg [2]
Acidity (pKa)6.9 [2]
Hazards [2]
GHS labelling:
GHS-pictogram-pollu.svg
Warning
H410
P273, P391, P501
Lethal dose or concentration (LD, LC):
6200 mg/kg [3]
4.9 mg/L [3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Prothioconazole is a synthetic chemical produced primarily for its fungicidal properties. It is a member of the class of compounds triazoles, and possesses a unique toxophore in this class of fungicides. Its effective fungicidal properties can be attributed to its ability to inhibit CYP51A1. This enzyme is required to biosynthesize ergosterol, a key component in the cell membrane of fungi.

Contents

Prothioconazole was first introduced into the market in 2004 by Bayer CropScience and quickly gained popularity due to its broad spectrum of activity against many fungal diseases of important cereal crops. It is used as a solo product under the trade name Proline, and in various mixtures in many other commercially produced fungicides.

Synthesis

The Grignard derivative of 2-chlorobenzyl chloride is added across the double bond of 1-chlorocyclopropyl-2-chloro-ethan-1-one. The chloride within the chloromethyl group is subsequently substituted by 1,2,4-triazole. Finally, to introduce the thioketone group at position 5 on the 1,2,4-triazole, the compound is first lithiated with n-butyl lithium, followed by the addition of sulfur (S8). [4] This synthesis is not enantio-selective, resulting in a racemic mixture. [5]

Chemical properties

Prothioconazole does not dissolve well in water but can be dissolved in acetone, esters and polyethylene glycol. [5] Photo-degeneration proceeds to completion, with the half life of photo degeneration being 47.7h. [5] It does not readily undergo hydrolysis, such that a pH of 4 and temperature of 50 °C results in half of the molecules being hydrolyzed after only 120 days. The primary degradation product is prothioconazole-desthio. This product possesses average mobility in the soil and its stability to hydrolysis consequently leads to its persistence in soil under aerobic conditions with total degradation in soil taking around 14.7 days. [5] It is also highly resistant to aqueous photolysis and degradation by both aerobic and anaerobic aquatic organisms. [6]

Toxicology

Classification

Extrapolation of animal studies led to prothioconazole and its metabolites being classified as "Not likely to be Carcinogenic to Humans" by the USEPA. [6] The GHS assessed prothioconazole and deemed it to be very toxic to aquatic life with long lasting effects (H410). [7]

The acceptable daily intake (ADI) for prothioconazole amounts to 0.01 mg/kg body weight per day, whereas the acute reference dose (ARfD) was determined to be 0.01 mg/kg bw per day. [8]

Toxicity

Experiments were conducted on animals where the primary route of uptake was oral administration. Coupling the compound to a radioactive label revealed enterohepatic circulation of the compound. [9] At the LOAEL, prothioconazole and its metabolites target the liver, kidneys and the bladder. The lethal dose (LD50) is 6200 mg/kg bw in rats. The dermal LD50 amounted to more than 2000 mg/kg bw, whereas a 4-hour inhalation LC50 was determined to be over 4.9 mg/L. Short term studies assessed adverse hepatic effects, an increase in liver weight, increased activity of liver enzymes and microscopic lesions. Prothioconazole was reported to be irritating to rabbit eyes but not skin. Studies have shown that elimination via the feces is the main route of excretion with over 70% excreted within 24 hours. [3] The half-life of elimination was deduced to be 44.3 hours. [9]

Metabolism in animals

The biotransformation of prothioconazole proceeds by either desulfuration or oxidative hydroxylation of the phenyl group and subsequent conjugation with glucuronic acid. The major metabolites maintain the triazolinthione moiety in all species investigated. The major metabolite was prothioconazole-S-glucuronide, which results from phase II reactions. [5] A linear dose-response relationship was observed for prothioconazole-desthio residues in liver and kidney at different feeding levels. [3]

Metabolism in plants

Prothioconazole-desthio is the major metabolite found in all plant species investigated. Prothioconazole-desthio and prothioconazole share similar toxicological properties. Studies suggest that the plant takes up 1,2,4-triazole from the soil and directly metabolizes it, as the presence of free 1,2,4-triazole was undetectable. [5]

Biochemical properties

Interactions

The primary mechanism of fungicidal action involves the inhibition of CYP51, a crucial component in the demethylation process of lanosterol or 24-methyl dihydroano-sterol at position 14. Disruption of this process results in the impaired biosynthesis mechanism of ergosterol. Ergosterol is a precursor for vitamin D2, which is essential for the structure of the cell membrane in many fungal species. [3]

Studies also suggest that prothioconazole can also interact with and temporarily suppress thyroid peroxidase. This enzyme is responsible for I2 formation from 2I. Inhibition of this process results in decreased production of thyroid hormones in humans, such as thyroxine or triiodothyronine. [9]

Related Research Articles

<span class="mw-page-title-main">Triclopyr</span> Chemical compound used as a herbicide

Triclopyr is an organic compound in the pyridine group that is used as a systemic foliar herbicide and fungicide.

<span class="mw-page-title-main">Dicofol</span> Chemical compound

Dicofol is an insecticide, an organochlorine that is chemically related to DDT. Dicofol is a miticide that is very effective against spider mite. Its production and use is banned internationally under the Stockholm Convention.

<span class="mw-page-title-main">Imidacloprid</span> Chemical compound

Imidacloprid is a systemic insecticide belonging to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.

<span class="mw-page-title-main">Chlorfenvinphos</span> Chemical compound

Chlorfenvinphos is the common name of an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was cancelled in 1991.

<span class="mw-page-title-main">Ethion</span> Chemical compound

Ethion (C9H22O4P2S4) is an organophosphate insecticide. Ethion is known to affect a neural enzyme called acetylcholinesterase and prevent it from working.

<span class="mw-page-title-main">Benomyl</span> Chemical compound

Benomyl is a fungicide introduced in 1968 by DuPont. It is a systemic benzimidazole fungicide that is selectively toxic to microorganisms and invertebrates, especially earthworms, but nontoxic toward mammals.

<span class="mw-page-title-main">Heptachlor</span> Chemical compound

Heptachlor is an organochlorine compound that was used as an insecticide. Usually sold as a white or tan powder, heptachlor is one of the cyclodiene insecticides. In 1962, Rachel Carson's Silent Spring questioned the safety of heptachlor and other chlorinated insecticides. Due to its highly stable structure, heptachlor can persist in the environment for decades. In the United States, the Environmental Protection Agency has limited the sale of heptachlor products to the specific application of fire ant control in underground transformers. The amount that can be present in different foods is regulated.

Hexachlorobenzene, or perchlorobenzene, is an organochloride with the molecular formula C6Cl6. It is a fungicide formerly used as a seed treatment, especially on wheat to control the fungal disease bunt. It has been banned globally under the Stockholm Convention on Persistent Organic Pollutants.

<span class="mw-page-title-main">Dimethoate</span> Chemical compound

Dimethoate is a widely used organophosphate insecticide and acaricide. It was patented and introduced in the 1950s by American Cyanamid. Like other organophosphates, dimethoate is an acetylcholinesterase inhibitor which disables cholinesterase, an enzyme essential for central nervous system function. It acts both by contact and through ingestion. It is readily absorbed and distributed throughout plant tissues, and is degraded relatively rapidly. One of the breakdown products of dimethoate is omethoate, a potent cholinesterase inhibitor, is ten times more toxic than its parent compound.

<span class="mw-page-title-main">Methiocarb</span> Chemical compound

Methiocarb is a carbamate pesticide which is used as an insecticide, bird repellent, acaricide and molluscicide since the 1960s. Methiocarb has contact and stomach action on mites and neurotoxic effects on molluscs. Seeds treated with methiocarb also affect birds. Other names for methiocarb are mesurol and mercaptodimethur.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

Dimethyl tetrachloroterephthalate (DCPA, with the main trade name Dacthal) is an organic compound with the formula C6Cl4(CO2CH3)2. It is the dimethyl ester of tetrachloroterephthalic acid, used as a preemergent herbicide with the ISO common name chlorthal-dimethyl. It kills annual grasses and many common weeds without killing sensitive plants such as turf grasses, flowers, fruits, vegetables, and cotton.

<span class="mw-page-title-main">Carbophenothion</span> Chemical compound

Carbophenothion also known as Stauffer R 1303 as for the manufacturer, Stauffer Chemical, is an organophosphorus chemical compound. It was used as a pesticide for citrus fruits under the name of Trithion. Carbophenothion was used as an insecticide and acaricide. Although not used anymore it is still a restricted use pesticide in the United States. The chemical is identified in the US as an extremely hazardous substance according to the Emergency Planning and Community Right-to-Know Act.

<span class="mw-page-title-main">Ethoprophos</span> Chemical compound

Ethoprophos (or ethoprop) is an organophosphate ester with the formula C8H19O2PS2. It is a clear yellow to colourless liquid that has a characteristic mercaptan-like odour. It is used as an insecticide and nematicide and it is an acetylcholinesterase inhibitor.

<span class="mw-page-title-main">Triamiphos</span> Chemical compound

Triamiphos (chemical formula: C12H19N6OP) is an organophosphate used as a pesticide and fungicide. It is used to control powdery mildews on apples and ornamentals. It was discontinued by the US manufacturer in 1998.

<span class="mw-page-title-main">Triazofos</span> Chemical compound

Triazofos is a chemical compound used in acaricides, insecticides, and nematicides.

<span class="mw-page-title-main">Imazaquin</span> Chemical compound

Imazaquin is an imidazolinone herbicide, so named because it contains an imidazolinone core. This organic compound is used to control a broad spectrum of weed species. It is a colorless or white solid, although commercial samples can appear brown or tan.

<span class="mw-page-title-main">Tebufenpyrad</span> Chemical compound

Tebufenpyrad is an insecticide and acaricide widely used in greenhouses. It is a white solid chemical with a slight aromatic smell. It is soluble in water and also in organic solvents.

<span class="mw-page-title-main">Cyanazine</span> Chemical compound

Cyanazine is a herbicide that belongs to the group of triazines. Cyanazine inhibits photosynthesis and is therefore used as a herbicide.

<span class="mw-page-title-main">Cadusafos</span> Thiosulfate insecticide against nematodes

Cadusafos is a chemical insecticide and nematicide often used against parasitic nematode populations. The compound acts as a acetylcholinesterase inhibitor. It belongs the chemical class of synthetic organic thiosulfates and it is a volatile and persistent clear liquid. It is used on food crops such as tomatoes, bananas and chickpeas. It is currently not approved by the European Commission for use in the EU. Exposure can occur through inhalation, ingestion or contact with the skin. The compound is highly toxic to nematodes, earthworms and birds but poses no carcinogenic risk to humans.

References

  1. "Safety (MSDS) data for prothioconazole" (PDF). Retrieved 2007-10-20.
  2. 1 2 3 4 5 6 7 8 PubChem. "Compound Summary - Prothioconazole" . Retrieved 20 March 2020.
  3. 1 2 3 4 5 FAO/WHO. "Pesticide residues in food 2008 - Prothioconazole" (PDF). Retrieved 20 March 2020.
  4. USEPA (6 May 2019). "Modern Crop Protection Compounds". John Wiley & Sons. ISBN   9783527340897 . Retrieved 20 March 2020.
  5. 1 2 3 4 5 6 Ambrus, Arpad. "Prothioconazole" (PDF). Retrieved 20 March 2020.
  6. 1 2 USEPA. "Pesticide Fact Sheet - Prothioconazole" (PDF). Retrieved 20 March 2020.
  7. PubChem. "LABORATORY CHEMICAL SAFETY SUMMARY (LCSS) - Prothioconazole" . Retrieved 20 March 2020.
  8. European Commission "EU Pesticides database - Prothioconazole"
  9. 1 2 3 USEPA. "Human Health Risk Assessment - Prothioconazole" . Retrieved 20 March 2020.