This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Pulmonary artery catheter | |
---|---|
ICD-9-CM | 89.64 |
MeSH | D002407 |
eMedicine | 1824547 |
A pulmonary artery catheter (PAC), also known as a Swan-Ganz catheter or right heart catheter, is a balloon-tipped catheter that is inserted into a pulmonary artery in a procedure known as pulmonary artery catheterization or right heart catheterization. [1] [2] Pulmonary artery catheterization is a useful measure of the overall function of the heart particularly in those with complications from heart failure, heart attack, arrhythmias or pulmonary embolism. It is also a good measure for those needing intravenous fluid therapy, for instance post heart surgery, shock, and severe burns. [2] The procedure can also be used to measure pressures in the heart chambers.
The pulmonary artery catheter allows direct, simultaneous measurement of pressures in the right atrium, right ventricle, pulmonary artery, and the filling pressure (pulmonary wedge pressure) of the left atrium. The pulmonary artery catheter is frequently referred to as a Swan-Ganz catheter, in honor of its inventors Jeremy Swan and William Ganz, from Cedars-Sinai Medical Center. [3]
General indications are:
No study has definitively demonstrated improved outcome in critically ill patients managed with PA catheters. [4] [5] Given that the PA catheter is a monitoring tool and not a therapy in and of itself this is not entirely surprising. Justification for its continued use rests on a large body of clinical experience, disadvantages of other cardiac output monitoring systems, its ability to accurately measure pulmonary artery pressure, and the potential to use the catheter as a direct conduit for drug administration into the pulmonary artery.
The catheter is introduced through a large vein—often the internal jugular, subclavian, or femoral veins. Ease of placement for a pulmonary artery catheter from easiest to difficult is: right internal jugular > left subclavian > left internal jugular > right subclavian. [5] From this entry site, it is threaded through the right atrium of the heart, the right ventricle, and subsequently into the pulmonary artery. The passage of the catheter may be monitored by dynamic pressure readings from the catheter tip or with the aid of fluoroscopy.
The standard pulmonary artery catheter has two lumens (Swan-Ganz) and is equipped with an inflatable balloon at the tip, which facilitates its placement into the pulmonary artery through the flow of blood. The balloon, when inflated, causes the catheter to "wedge" in a small pulmonary blood vessel. So wedged, the catheter can provide an indirect measurement of the pressure in the left atrium of the heart, showing a mean pressure, in addition to a, x, v, and y waves which have implications for status of the left atria and the mitral valve. Left ventricular end diastolic pressure (LVedp) is measured using a different procedure, with a catheter that has directly crossed the aortic valve and is well positioned in the left ventricle. LV edp reflects fluid status of the individual in addition to heart health. See also pulmonary wedge pressure and ventricular pressure.
The idea for a sail or balloon tip modification of Ronald Bradley's simple portex tubing method came about from Swan's observation from the Laguna Beach CA shore of sail boats on the water on a relatively calm day. Boats with conventional slot sails were still; one with a spinnaker was able to make reasonable headway. The concept of using thermodilution to measure cardiac output was originally the idea of Arnost Fronek. [6] As a former colleague of Fronek, Ganz added the thermistor modification after Swan showed him the initial balloon design, which was fabricated by Edwards Laboratories, which had previously contracted with Swan as a consultant.
After Swan developed the initial balloon tip, Ganz used Fronek's idea and added a small thermistor (temperature probe) about 3 cm behind the tip. 10 ml of saline (0.9% NaCl) under 10 °C or room temperature (not as accurate) is injected into an opening in the right atrium. As this cooler fluid passes the tip thermistor, a very brief drop in the blood temperature is recorded. A recent variation in design is the incorporation of a heating coil on the catheter (30 cm from the tip, residing in the atrium area) which eliminates the cold fluid bolus, a major factor in human technique variation.
By attaching both the injector site and the ventricular thermistor to a small computer, the thermodilution curve can be plotted. If details about the patient's body mass index (size); core temp, Systolic, diastolic, central venous pressure CVP (measured from the atrium by the third lumen simultaneously) and pulmonary artery pressure are input, a comprehensive flow vs pressure map can be calculated.
In crude terms, this measurement compares left and right cardiac activity and calculates preload and afterload flow and pressures which, theoretically, can be stabilized or adjusted with drugs to either constrict or dilate the vessels (to raise or lower, respectively, the pressure of blood flowing to the lungs), in order to maximize oxygen for delivery to the body tissues.
The ability to record results is not a guarantee of patient survivability.
Modern catheters have multiple lumina — five or six are common — and have openings along the length to allow administration of inotropes and other drugs directly into the atrium. Drugs to achieve these changes can be delivered into the atrium via the fourth lumen, usually dedicated to medication. Common drugs used are various inotropes, norepinephrine or even atropine. A further set of calculations can be made by measuring the arterial blood and central venous (from the third lumen) and inputting these figures into a spreadsheet or the cardiac output computer, if so equipped, and plotting an oxygen delivery profile.
One further development in recent years has been the invention of a catheter with a fiber-optic based probe which is extended and lodged into the ventricle wall providing instant readings of SvO2 or oxygen saturation of the ventricle tissues. This technique has a finite life as the sensor becomes coated with protein and it can irritate the ventricle via the contact area.
Various other techniques have largely relegated the PA catheter to history, e.g. the lithium dilution technique; the external bio-resistance monitor, pulse contour analysis or the very simple and reliable technique of esophogeal doppler measurements of the descending aorta.
The procedure is not without risk, and complications can be life-threatening. It can lead to arrhythmias, pseudoaneurysm formation or rupture of the pulmonary artery, thrombosis, infection, pneumothorax, bleeding, and other problems. [7]
The benefit of the use of this type of catheter has been controversial. Therefore, many clinicians minimize its use[ citation needed ].
Several studies in the 1980s seemed to show a benefit of the increase in physiological information. Many reports showing benefit of the PA catheter are from anaesthetic, and Intensive Care Unit (ICU) settings. In these settings cardiovascular performance was optimized thinking patients would have supra-normal metabolic requirements. In 2005, a multi-center randomized controlled trial found no difference in mortality or length of stay in ICU patients who received pulmonary artery catheters, though it did find a 10% incidence of complications related to the procedure. [8]
Contrary to earlier studies there is growing evidence the use of a PA catheter (PAC) does not necessarily lead to improved outcome. [9] One explanation could be that nurses and physicians are insufficiently knowledgeable to adequately interpret the PA catheter measurements. Also, the benefits might be reduced by the complications from the use of the PAC. Furthermore, using information from the PAC might result in a more aggressive therapy causing the detrimental effect. Or, it could give rise to more harmful therapies (i.e. achieving supra-normal values could be associated with increased mortality).
This interpretation of Adolph Ficks' formulation for cardiac output by time/temperature curves is an expedient but limited and invasive model of right heart performance. It remains an exceptional method of monitoring volume overload leading to pulmonary edema in an ICU setting.
A feature of the pulmonary artery catheter that has been largely ignored in the clinical setting is its ability to monitor total body oxygen extraction by measuring the mixed venous oxygen saturation. Regardless of the value obtained by measurements of the cardiac output, the mixed venous oxygen saturation is an accurate parameter of total body blood flow and therefore cardiac output. The assumption that a low mixed venous oxygen saturation (normal = 60% except for the coronary sinus where it approximates 40% reflecting the high metabolic rate of the myocardium) represents less than adequate oxygen delivery is consistent with physiological and metabolic observations. [10] High oxygen extraction is associated with low cardiac output and decreased mixed venous oxygen saturation. Except during hypothermia and in severe sepsis, low mixed venous oxygen saturations are indication of inadequate hemodynamics. The ability of the pulmonary artery catheter to sample mixed venous blood is of great utility to manage low cardiac output states.
Non-invasive echocardiography and pulse-wave cardiac output monitoring are concordant with (and much safer) if not better than invasive methods defining right and left heart performance. The emergence of MRSA and similar hospital based catheter infections now clearly limits the utility of this type of invasive cardiac ICU intervention.
The heart is a muscular organ found in most animals. This organ pumps blood through the blood vessels. Heart and blood vessels together make the circulatory system. The pumped blood carries oxygen and nutrients to the tissue, while carrying metabolic waste such as carbon dioxide to the lungs. In humans, the heart is approximately the size of a closed fist and is located between the lungs, in the middle compartment of the chest, called the mediastinum.
In cardiac physiology, cardiac output (CO), also known as heart output and often denoted by the symbols , , or , is the volumetric flow rate of the heart's pumping output: that is, the volume of blood being pumped by a single ventricle of the heart, per unit time. Cardiac output (CO) is the product of the heart rate (HR), i.e. the number of heartbeats per minute (bpm), and the stroke volume (SV), which is the volume of blood pumped from the left ventricle per beat; thus giving the formula:
dextro-Transposition of the great arteries is a potentially life-threatening birth defect in the large arteries of the heart. The primary arteries are transposed.
Mitral stenosis is a valvular heart disease characterized by the narrowing of the opening of the mitral valve of the heart. It is almost always caused by rheumatic valvular heart disease. Normally, the mitral valve is about 5 cm2 during diastole. Any decrease in area below 2 cm2 causes mitral stenosis. Early diagnosis of mitral stenosis in pregnancy is very important as the heart cannot tolerate increased cardiac output demand as in the case of exercise and pregnancy. Atrial fibrillation is a common complication of resulting left atrial enlargement, which can lead to systemic thromboembolic complications such as stroke.
Atrial septal defect (ASD) is a congenital heart defect in which blood flows between the atria of the heart. Some flow is a normal condition both pre-birth and immediately post-birth via the foramen ovale; however, when this does not naturally close after birth it is referred to as a patent (open) foramen ovale (PFO). It is common in patients with a congenital atrial septal aneurysm (ASA).
The jugular venous pressure is the indirectly observed pressure over the venous system via visualization of the internal jugular vein. It can be useful in the differentiation of different forms of heart and lung disease. Classically three upward deflections and two downward deflections have been described.
Cardiac catheterization is the insertion of a catheter into a chamber or vessel of the heart. This is done both for diagnostic and interventional purposes.
Cardiogenic shock is a medical emergency resulting from inadequate blood flow to the body's organs due to the dysfunction of the heart. Signs of inadequate blood flow include low urine production, cool arms and legs, and decreased level of consciousness. People may also have a severely low blood pressure and heart rate.
The atrium is one of the two upper chambers in the heart that receives blood from the circulatory system. The blood in the atria is pumped into the heart ventricles through the atrioventricular mitral and tricuspid heart valves.
In cardiac physiology, preload is the amount of sarcomere stretch experienced by cardiac muscle cells, called cardiomyocytes, at the end of ventricular filling during diastole. Preload is directly related to ventricular filling. As the relaxed ventricle fills during diastole, the walls are stretched and the length of sarcomeres increases. Sarcomere length can be approximated by the volume of the ventricle because each shape has a conserved surface-area-to-volume ratio. This is useful clinically because measuring the sarcomere length is destructive to heart tissue. It requires cutting out a piece of cardiac muscle to look at the sarcomeres under a microscope. It is currently not possible to directly measure preload in the beating heart of a living animal. Preload is estimated from end-diastolic ventricular pressure and is measured in millimeters of mercury (mmHg).
Pulmonary atresia is a congenital malformation of the pulmonary valve in which the valve orifice fails to develop. The valve is completely closed thereby obstructing the outflow of blood from the heart to the lungs. The pulmonary valve is located on the right side of the heart between the right ventricle and pulmonary artery. In a normal functioning heart, the opening to the pulmonary valve has three flaps that open and close.
Pulsus paradoxus, also paradoxic pulse or paradoxical pulse, is an abnormally large decrease in stroke volume, systolic blood pressure and pulse wave amplitude during inspiration. Pulsus paradoxus is not related to pulse rate or heart rate, and it is not a paradoxical rise in systolic pressure. Normally, blood pressure drops less precipitously than 10 mmHg during inhalation. Pulsus paradoxus is a sign that is indicative of several conditions, most commonly pericardial effusion.
Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. CVP reflects the amount of blood returning to the heart and the ability of the heart to pump the blood back into the arterial system. CVP is often a good approximation of right atrial pressure (RAP), although the two terms are not identical, as a pressure differential can sometimes exist between the venae cavae and the right atrium. CVP and RAP can differ when arterial tone is altered. This can be graphically depicted as changes in the slope of the venous return plotted against right atrial pressure.
Pulmonic stenosis, is a dynamic or fixed obstruction of flow from the right ventricle of the heart to the pulmonary artery. It is usually first diagnosed in childhood.
In cardiology, a cardiac shunt is a pattern of blood flow in the heart that deviates from the normal circuit of the circulatory system. It may be described as right-left, left-right or bidirectional, or as systemic-to-pulmonary or pulmonary-to-systemic. The direction may be controlled by left and/or right heart pressure, a biological or artificial heart valve or both. The presence of a shunt may also affect left and/or right heart pressure either beneficially or detrimentally.
Lutembacher's syndrome is a very rare form of congenital heart disease that affects one of the chambers of the heart as well as a valve. It is commonly known as both congenital atrial septal defect (ASD) and acquired mitral stenosis (MS). Congenital atrial septal defect refers to a hole being in the septum or wall that separates the two atria; this condition is usually seen in fetuses and infants. Mitral stenosis refers to mitral valve leaflets sticking to each other making the opening for blood to pass from the atrium to the ventricles very small. With the valve being so small, blood has difficulty passing from the left atrium into the left ventricle. Septal defects that may occur with Lutembacher's syndrome include: Ostium primum atrial septal defect or ostium secundum which is more prevalent.
Atrial septostomy is a surgical procedure in which a small hole is created between the upper two chambers of the heart, the atria. This procedure is primarily used to palliate dextro-Transposition of the great arteries or d-TGA, a life-threatening cyanotic congenital heart defect seen in infants. It is performed prior to an arterial switch operation. Atrial septostomy has also seen limited use as a surgical treatment for pulmonary hypertension. The first atrial septostomy was developed by Vivien Thomas in a canine model and performed in humans by Alfred Blalock. The Rashkind balloon procedure, a common atrial septostomy technique, was developed in 1966 by American cardiologist William Rashkind at the Children's Hospital of Philadelphia.
The following outline is provided as an overview of and topical guide to cardiology, the branch of medicine dealing with disorders of the human heart. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease and electrophysiology. Physicians who specialize in cardiology are called cardiologists.
Obstructive shock is one of the four types of shock, caused by a physical obstruction in the flow of blood. Obstruction can occur at the level of the great vessels or the heart itself. Causes include pulmonary embolism, cardiac tamponade, and tension pneumothorax. These are all life-threatening. Symptoms may include shortness of breath, weakness, or altered mental status. Low blood pressure and tachycardia are often seen in shock. Other symptoms depend on the underlying cause.
Raghib syndrome is rare a congenital heart defect where the left superior vena cava (LSVC) is draining into the left atrium in addition to an absent coronary sinus and an atrial septal defect. This can be considered a dangerous heart condition because it puts the individual at a high risk of stroke. Other defects that are often associated with Raghib syndrome can include ventricular septal defects, enlargement of the tricuspid annulus, and pulmonary stenosis. While this is considered an extremely rare developmental complex, cases regarding a persistent left superior vena cava (PLSVC) are relatively common among congenital heart defects. It is also important to note that the PLSVC often drains into the right atrium, and only drains into the left atrium in approximately 10 to 20% of individuals with the defect.