Q2343-BX418

Last updated
Q2343-BX418
Observation data (J2000 epoch)
Constellation Pegasus
Right ascension 23h 46m 18.57s [1]
Declination 12° 47 47.38 [1]
Redshift 2.3052 [1]
Apparent magnitude  (V)23.9
Characteristics
Mass 1.2×1010 [1]   M
Other designations
HB89 2343+125 BX418, PGC 4668402, SDSS J234618.57+124747.8

Q2343-BX418 is a young, low-metallicity dwarf galaxy located about 10 billion light years away from Earth. It has a redshift of 2.3052, [1] and a stellar mass of 500 million solar masses. [2]

Contents

Halo

In July 2018, new research was published suggesting that the galaxy was surrounded by a massive halo of diffuse gas 150,000 light years in diameter, about 10 times the size of the galaxy itself. The halo was measured to be giving off light in the Lyman-alpha line, an ultraviolet wavelength. [3] By measuring the halo's spectra using the Keck Cosmic Web Imager at the Keck Observatory, the researchers found that the galaxy is surrounded by a roughly spherical outflow of gas. They also found that there are significant variations in the density and velocity of this gas. [4]

Steidel's team had studied the galaxy before using other instruments at the Keck Observatory. However, the Keck Cosmic Web Imager allowed them to study the faint gas connecting galaxies, known as the cosmic web. [5]

See also

Related Research Articles

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure. Hydrodynamics simulation, which simulates both baryons and dark matter, is widely used to study galaxy formation and evolution.

<span class="mw-page-title-main">Globular cluster</span> Spherical collection of stars

A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies, and the distinction between the two is not always clear. Their name is derived from Latin globulus. Globular clusters are occasionally known simply as "globulars".

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

<span class="mw-page-title-main">Andromeda Galaxy</span> Barred spiral galaxy in the Local Group

The Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way. It was originally named the Andromeda Nebula and is cataloged as Messier 31, M31, and NGC 224. Andromeda has a diameter of about 46.56 kiloparsecs and is approximately 765 kpc from Earth. The galaxy's name stems from the area of Earth's sky in which it appears, the constellation of Andromeda, which itself is named after the princess who was the wife of Perseus in Greek mythology.

<span class="mw-page-title-main">Messier 87</span> Elliptical galaxy in the Virgo Galaxy Cluster

Messier 87 is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters—about 15,000 compared with the 150–200 orbiting the Milky Way—and a jet of energetic plasma that originates at the core and extends at least 1,500 parsecs, traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.

<span class="mw-page-title-main">Stellar population</span> Grouping of stars by similar metallicity

In 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926.

<span class="mw-page-title-main">Intermediate-mass black hole</span> Class of black holes with a mass range of 100 to 100000 solar masses

An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range 102–105 solar masses: significantly more than stellar black holes but less than the 105–109 solar mass supermassive black holes. Several IMBH candidate objects have been discovered in the Milky Way galaxy and others nearby, based on indirect gas cloud velocity and accretion disk spectra observations of various evidentiary strength.

<span class="mw-page-title-main">Dwarf galaxy</span> Small galaxy composed of up to several billion stars

A dwarf galaxy is a small galaxy composed of about 1000 up to several billion stars, as compared to the Milky Way's 200–400 billion stars. The Large Magellanic Cloud, which closely orbits the Milky Way and contains over 30 billion stars, is sometimes classified as a dwarf galaxy; others consider it a full-fledged galaxy. Dwarf galaxies' formation and activity are thought to be heavily influenced by interactions with larger galaxies. Astronomers identify numerous types of dwarf galaxies, based on their shape and composition.

<span class="mw-page-title-main">Milky Way</span> Galaxy containing the Solar System

The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλαξίας κύκλος, meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Doust Curtis, observations by Edwin Hubble showed that the Milky Way is just one of many galaxies.

<span class="mw-page-title-main">NGC 2366</span> Galaxy in the constellation Camelopardalis

NGC 2366 is a Magellanic barred irregular dwarf galaxy located in the constellation Camelopardalis.

HD 222582 is a multiple star system in the equatorial constellation of Aquarius. It is invisible to the naked eye with an apparent visual magnitude of 7.7, but can be viewed with binoculars or a small telescope. The system is located at a distance of 137 light years from the Sun based on parallax, and it is drifting further away with a radial velocity of +12 km/s. It is located close enough to the ecliptic that it is subject to lunar occultations.

<span class="mw-page-title-main">Smith's Cloud</span> High velocity cloud in the constellation Aquila

Smith's Cloud is a high-velocity cloud of hydrogen gas located in the constellation Aquila at Galactic coordinates l = 39°, b = −13°. The cloud was discovered in 1963 by Gail Bieger, née Smith, who was an astronomy student at Leiden University in the Netherlands.

Segue 1 is a dwarf spheroidal galaxy or globular cluster situated in the Leo constellation and discovered in 2006 by Sloan Digital Sky Survey. It is located at a distance of about 23 kpc from the Sun and moves away from the Sun with the velocity of about 206 km/s. Segue 1 has a noticeably elongated shape with the half-light radius of about 30 pc. This elongation may be caused by the tidal forces acting from the Milky Way galaxy if Segue 1 is being tidally disrupted now.

<span class="mw-page-title-main">Pea galaxy</span> Possible type of luminous blue compact galaxy

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

<span class="mw-page-title-main">Hercules (dwarf galaxy)</span> Dwarf spheroidal galaxy in the constellation Hercules

Hercules, or Her, is a dwarf spheroidal galaxy situated in the Hercules constellation and discovered in 2006 in data obtained by the Sloan Digital Sky Survey. The galaxy is located at a distance of about 140 kpc from the Sun and moves away from the Sun with a velocity of about 45 km/s. It is classified as a dwarf spheroidal galaxy (dSph). It has a noticeably elongated shape with a half-light radius of about 350 pc. This elongation may be caused by tidal forces acting from the Milky Way galaxy, meaning that Her is being tidally disrupted now. Her also shows some gradient of velocities across the galaxy's body and is embedded into a faint stellar stream, which also points towards its ongoing tidal disruption.

Leo T is a dwarf galaxy situated in the Leo constellation and discovered in 2006 in the data obtained by Sloan Digital Sky Survey. The galaxy is located at the distance of about 420 kpc from the Sun and moves away from the Sun with the velocity of about 35 km/s. The velocity with respect to the Milky Way is around −60 km/s implying a slow infall onto the Milky Way. Leo T is classified as a transitional object between dwarf spheroidal galaxies (dSph) and dwarf irregular galaxies (dIrr). Its half-light radius is about 180 pc.

Kurt Ludwig Adelberger is an American astrophysicist and sustainability manager, who formerly worked at Google as a principal in energy and sustainability and was previously the Engagement Manager for McKinsey & Company.

<span class="mw-page-title-main">TON 618</span> Quasar and Lyman-alpha blob in the constellation Canes Venatici

TON 618 is a hyperluminous, broad-absorption-line, radio-loud quasar and Lyman-alpha blob located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 18.2 billion light-years from Earth. It possesses one of the most massive black holes ever found, at 40.7 billion M.

<span class="mw-page-title-main">NGC 3311</span> Galaxy in the constellation Hydra

NGC 3311 is a super-giant elliptical galaxy located about 190 million light-years away in the constellation Hydra. The galaxy was discovered by astronomer John Herschel on March 30, 1835. NGC 3311 is the brightest member of the Hydra Cluster and forms a pair with NGC 3309 which along with NGC 3311, dominate the central region of the Hydra Cluster.

Dawn K. Erb is an American physicist. She is an associate professor in the department of physics at the University of Wisconsin–Milwaukee.

References

  1. 1 2 3 4 5 Dawn K. Erb; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max; Reddy, Naveen A.; Adelberger, Kurt L. (February 3, 2006). "The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2*". The Astrophysical Journal. 646 (1): 107–132. arXiv: astro-ph/0604041 . Bibcode:2006ApJ...646..107E. doi:10.1086/504891. S2CID   14911369.
  2. Erb, Dawn K.; Steidel, Charles C.; Chen, Yuguang (May 21, 2018). "The Kinematics of Extended Lyα Emission in a Low-mass, Low-metallicity Galaxy at z = 2.3*". The Astrophysical Journal. 862 (1): L10. arXiv: 1807.00065 . Bibcode:2018ApJ...862L..10E. doi: 10.3847/2041-8213/aacff6 . S2CID   56389863.
  3. Mathewson, Samantha (26 July 2018). "Giant Gas Halo May Reveal How Early Galaxies Evolved". Space.com. Retrieved July 27, 2018.
  4. "Giant Gaseous Halo Surrounds Young Star-Forming Galaxy". Sci-News.com. 26 July 2018. Retrieved July 27, 2018.
  5. "Young Galaxy's Halo Offers Clues To Its Growth And Evolution". Keck Observatory. Retrieved July 27, 2018.