WASP-21

Last updated
WASP-21 / Tangra
WASP-21.jpg
Size comparison between Sun and WASP-21
Observation data
Epoch J2000       Equinox J2000
Constellation Pegasus [1]
Right ascension 23h 09m 58.25s [2]
Declination +18° 23 45.9 [2]
Apparent magnitude  (V)11.58±0.08 [3]
Characteristics
Evolutionary stage subgiant [2] [4]
Spectral type G3V [5]
Astrometry
Radial velocity (Rv)−89.21±0.46 [2] km/s
Proper motion (μ)RA: +17.567(21) mas/yr [2]
Dec.: +18.639(18) mas/yr [2]
Parallax (π)3.9089±0.0197  mas [2]
Distance 834 ± 4  ly
(256 ± 1  pc)
Absolute magnitude  (MV)4.97 [3]
Details
Mass 0.89±0.071 [6]   M
Radius 1.136±0.049 [6]   R
Luminosity 1.4 [7]   L
Surface gravity (log g)4.277±0.025 [6]   cgs
Temperature 5,800±100 [3]   K
Metallicity −0.4±0.1 [3]
Metallicity [Fe/H]−0.46±0.11 [3]   dex
Rotational velocity (v sin i)1.5±0.6 [3]  km/s
Age 12±5 [3]   Gyr
Other designations
Tangra, TOI-5963, TIC 436478932, WASP-21, GSC 01715-00679, 2MASS J23095825+1823459 [8]
Database references
SIMBAD data
Exoplanet Archive data

WASP-21, also named Tangra, is a G-type star (spectral type G3V) that has reached the end of its main sequence lifetime. [4] [9] It lies approximately 834 light-years away, in the constellation of Pegasus. The star is relatively metal-poor, having 40% of heavy elements compared to the Sun. [9] Kinematically, WASP-21 belongs to the thick disk of the Milky Way. [3] It has an exoplanet named WASP-21b. [10]

Contents

A survey in 2012 failed to find any stellar companions to WASP-21. [11]

Naming

In 2019 the WASP-21 system was chosen as part of the NameExoWorlds campaign organised by the International Astronomical Union, which assigned each country a star and planet to be named. WASP-21 was assigned to Bulgaria. The winning proposal named the star Tangra after a deity worshipped by the early Bulgars, and the planet Bendida after a deity worshipped by the Thracians. [12]

Planetary system

In 2010 WASP-21 was discovered to host a hot Jupiter type planet by the Wide Angle Search for Planets (WASP), [3] confirmed by radial velocity by the WASP team in 2010.

Transit-timing variation analysis in 2015 did not find any additional planets in the system. [9]

In 2020, spectroscopic analysis found that the WASP-21b atmosphere is mostly cloudless and contains sodium. [13]

The WASP-21 planetary system [6] [9]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b / Bendida0.276 ± 0.018  MJ 0.0499 ± 0.00134.322482<0.048 [14] 86.97 ± 0.33° 1.162  RJ

References

  1. Roman, Nancy G. (1987). "Identification of a constellation from a position". Publications of the Astronomical Society of the Pacific . 99 (617): 695. Bibcode:1987PASP...99..695R. doi: 10.1086/132034 . Constellation record for this object at VizieR.
  2. 1 2 3 4 5 6 7 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  3. 1 2 3 4 5 6 7 8 9 Bouchy, F.; Hebb, L.; Skillen, I.; Collier Cameron, A.; Smalley, B.; Udry, S.; Anderson, D. R.; Boisse, I.; Enoch, B.; Haswell, C. A.; Hébrard, G.; Hellier, C.; Joshi, Y.; Kane, S. R.; Maxted, P. F. L.; Mayor, M.; Moutou, C.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Simpson, E. K.; Smith, A. M. S.; Stempels, H. C.; Street, R.; Triaud, A. H. M. J.; West, R. G.; Wheatley, P. J. (2010). "WASP-21b: A hot-Saturn exoplanet transiting a thick disc star". Astronomy and Astrophysics. 519: A98. arXiv: 1006.2605 . Bibcode:2010A&A...519A..98B. doi:10.1051/0004-6361/201014817. S2CID   119182669.
  4. 1 2 Barros, S. C. C.; Pollacco, D. L.; Gibson, N. P.; Howarth, I. D.; Keenan, F. P.; Simpson, E. K.; Skillen, I.; Steele, I. A. (2011). "A lower mass for the exoplanet WASP-21b". Monthly Notices of the Royal Astronomical Society. 416 (4): 2593–2599. arXiv: 1106.2118 . Bibcode:2011MNRAS.416.2593B. doi: 10.1111/j.1365-2966.2011.19210.x . S2CID   56165266.
  5. Ehrenreich, D.; Désert, J. -M. (2011). "Mass-loss rates for transiting exoplanets". Astronomy and Astrophysics. 529: A136. arXiv: 1103.0011 . Bibcode:2011A&A...529A.136E. doi:10.1051/0004-6361/201016356.
  6. 1 2 3 4 Ciceri, S.; Mancini, L.; Southworth, J.; Nikolov, N.; Bozza, V.; Bruni, I.; Calchi Novati, S.; d'Ago, G.; Henning, Th. (2013). "Simultaneous follow-up of planetary transits: Revised physical properties for the planetary systems HAT-P-16 and WASP-21". Astronomy & Astrophysics. 557: A30. arXiv: 1307.5874 . Bibcode:2013A&A...557A..30C. doi:10.1051/0004-6361/201321669. S2CID   55192357.
  7. Loyd, R. O. Parke; Shkolnik, Evgenya L.; Schneider, Adam C.; Richey-Yowell, Tyler; Barman, Travis S.; Peacock, Sarah; Pagano, Isabella (2020). "Current Population Statistics do Not Favor Photoevaporation over Core-powered Mass Loss as the Dominant Cause of the Exoplanet Radius Gap". The Astrophysical Journal. 890 (1): 23. arXiv: 1912.12305 . Bibcode:2020ApJ...890...23L. doi: 10.3847/1538-4357/ab6605 .
  8. "WASP-21". SIMBAD . Centre de données astronomiques de Strasbourg.
  9. 1 2 3 4 Seeliger, M.; Kitze, M.; Errmann, R.; Richter, S.; Ohlert, J. M.; Chen, W. P.; Guo, J. K.; Göğüş, E.; Güver, T.; Aydın, B.; Mottola, S.; Hellmich, S.; Fernandez, M.; Aceituno, F. J.; Dimitrov, D.; Kjurkchieva, D.; Jensen, E.; Cohen, D.; Kundra, E.; Pribulla, T.; Vaňko, M.; Budaj, J.; Mallonn, M.; Wu, Z.-Y.; Zhou, X.; Raetz, St.; Adam, C.; Schmidt, T. O. B.; Ide, A.; et al. (2015), "Ground-based transit observations of the HAT-P-18, HAT-P-19, HAT-P-27/WASP40 and WASP-21 systems", Monthly Notices of the Royal Astronomical Society, 451 (4): 4060–4072, arXiv: 1508.06215 , Bibcode:2015MNRAS.451.4060S, doi: 10.1093/mnras/stv1187 , S2CID   56034663
  10. "Exoplanet-catalog". Exoplanet Exploration: Planets Beyond our Solar System. 2 October 2017. Retrieved 2022-12-10.
  11. Ginski, C.; Mugrauer, M.; Seeliger, M.; Eisenbeiss, T. (2012), "A lucky imaging multiplicity study of exoplanet host stars", Monthly Notices of the Royal Astronomical Society, 421 (3): 2498–2509, arXiv: 1202.4586 , Bibcode:2012MNRAS.421.2498G, doi: 10.1111/j.1365-2966.2012.20485.x , S2CID   118573795
  12. "Bulgaria | NameExoworlds". Name Exoworlds. 2019-12-17. Retrieved 2019-12-30.
  13. Chen, G.; Casasayas-Barris, N.; Pallé, E.; Welbanks, L.; Madhusudhan, N.; Luque, R.; Murgas, F. (2020), "Detection of Na in WASP-21b's lower and upper atmosphere", Astronomy & Astrophysics, 642: A54, arXiv: 2007.13429 , Bibcode:2020A&A...642A..54C, doi:10.1051/0004-6361/202038661, S2CID   220793336
  14. Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics . 602: A107. arXiv: 1704.00373 . Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID   118923163.