Gliese 880

Last updated
Gliese 880
Observation data
Epoch J2000       Equinox J2000
Constellation Pegasus
Right ascension 22h 56m 34.805s [1]
Declination +16° 33 12.36 [1]
Apparent magnitude  (V)8.68 [2]
Characteristics
Evolutionary stage Main-sequence star
Spectral type M1.5V [3]
Apparent magnitude  (B)10.187 [2]
Apparent magnitude  (R)7.80 [2]
Apparent magnitude  (I)7.100 [2]
Apparent magnitude  (J)5.360±0.020 [2]
Apparent magnitude  (H)4.800±0.036 [2]
Apparent magnitude  (K)4.523±0.016 [2]
B−V color index 1.507±0.015 [2]
Astrometry
Radial velocity (Rv)−27.87±0.13 [1]  km/s
Proper motion (μ)RA: −1034.733(26)  mas/yr [1]
Dec.: −284.131(25)  mas/yr [1]
Parallax (π)145.6234 ± 0.0255  mas [1]
Distance 22.397 ± 0.004  ly
(6.867 ± 0.001  pc)
Absolute magnitude  (MV)9.50 [2]
Details [4]
Mass 0.569  M
Radius 0.548±0.005  R
Luminosity 0.05112 ± 0.00074  L
Habitable zone inner limit0.218 AU
Habitable zone outer limit0.435 AU
Surface gravity (log g)4.77 [5]   cgs
Temperature 3713±11  K
Metallicity [Fe/H]+0.20±0.05 [6]   dex
Rotation 37.5±0.1 d [7]
Rotational velocity (v sin i)2.07 [6]  km/s
Other designations
BD+15 4733, Gaia DR2  2828928008202069376, HD  216899, HIP  113296, Ross  671, 2MASS J22563497+1633130 [8]
Database references
SIMBAD data

Gliese 880 is a red dwarf star 22.4 light-years away in the northern constellation of Pegasus. No stellar companions to Gliese 880 have been discovered as of 2020. [9]

Search for planets

In June 2019, a candidate planet detected by radial velocity in orbit around Gliese 880 was reported in a preprint. This would have a minimum mass about 8.5 times that of Earth and orbit with a period of 39.4 days, [10] which is close to the star's rotation period of 37.5 days. [7] A 2024 study did not detect the exact period of 39.4 days, but detected two radial velocity signals at 37.2 and 40.5 days, which correspond to the stellar rotation and an alias of it. Presumably, the previously claimed planet candidate is an artifact of stellar activity. [11]

Related Research Articles

Gliese 674(GJ 674) is a small red dwarf star with an exoplanetary companion in the southern constellation of Ara. It is too faint to be visible to the naked eye, having an apparent visual magnitude of 9.38 and an absolute magnitude of 11.09. The system is located at a distance of 14.85 light-years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −2.9 km/s. It is a candidate member of the 200 million year old Castor stream of co-moving stars.

<span class="mw-page-title-main">AD Leonis</span> M-type star in the constellation Leo

AD Leonis (Gliese 388) is a red dwarf star. It is located relatively near the Sun, at a distance of 16.2 light-years, in the constellation Leo. AD Leonis is a main sequence star with a spectral classification of M3.5V. It is a flare star that undergoes random increases in luminosity.

Gliese 849, or GJ 849, is a small, solitary star in the equatorial constellation of Aquarius. It has a reddish hue and is invisible to the naked eye with an apparent visual magnitude of 10.41. The distance to this star is 28.8 light-years based on parallax, but it is drifting closer to the Sun with a radial velocity of −15.3 km/s. It has a pair of confirmed gas giant companions.

Gliese 412 is a pair of stars that share a common proper motion through space and are thought to form a binary star system. The pair have an angular separation of 31.4″ at a position angle of 126.1°. They are located 15.8 light-years distant from the Sun in the constellation Ursa Major. Both components are relatively dim red dwarf stars.

Gliese 176 is a small star with an orbiting exoplanet in the constellation of Taurus. With an apparent visual magnitude of 9.95, it is too faint to be visible to the naked eye. It is located at a distance of 30.9 light years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 26.4 km/s.

Gliese 433 is a dim red dwarf star with multiple exoplanetary companions, located in the equatorial constellation of Hydra. The system is located at a distance of 29.6 light-years from the Sun based on parallax measurements, and it is receding with a radial velocity of +18 km/s. Based on its motion through space, this is an old disk star. It is too faint to be viewed with the naked eye, having an apparent visual magnitude of 9.81 and an absolute magnitude of 10.07.

Gliese 806 is a star in the northern constellation of Cygnus, located about a degree to the southeast of the bright star Deneb. It is invisible to the naked eye with an apparent visual magnitude of +10.79. The star is located at a distance of 39.3 light years from the Sun based on stellar parallax. It is drifting closer with a radial velocity of −24.6 km/s, and is predicted to come to within 30.1 light-years in ~198,600 years. The star hosts two known planetary companions.

Gliese 521 is a double star in the northern constellation of Canes Venatici. The system is located at a distance of 43.6 light-years from the Sun based on parallax measurements, but is drawing closer with a radial velocity of −65.6 km/s. It is predicted to come as close as 15.70 light-years from the Sun in 176,900 years. This star is too faint to be visible to the naked eye, having an apparent visual magnitude of +10.26 and an absolute magnitude of 10.24.

Gliese 179 is a small red dwarf star with an exoplanetary companion in the equatorial constellation of Orion. It is much too faint to be visible to the naked eye with an apparent visual magnitude of 11.94. The system is located at a distance of 40.5 light-years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of –9 km/s. It is a high proper motion star, traversing the celestial sphere at an angular rate of 0.370″·yr−1.

Gliese 754 is a dim star in the southern constellation of Telescopium. It has an apparent visual magnitude of 12.25, which requires a telescope to view. The star is located at a distance of 19.3 light-years from the Sun based on parallax, and it is drifting further away with a radial velocity of +6 km/s. It is one of the hundred closest stars to the Solar System. Calculations of its orbit around the Milky Way showed that it is eccentric, and indicate that it might be a thick disk object.

Gliese 180, is a small red dwarf star in the equatorial constellation of Eridanus. It is invisible to the naked eye with an apparent visual magnitude of 10.9. The star is located at a distance of 39 light years from the Sun based on parallax, and is drifting closer with a radial velocity of −14.6 km/s. It has a high proper motion, traversing the sky at the rate of 0.765 arcseconds per year.

GJ 3323 is a nearby single star located in the equatorial constellation Eridanus, about 0.4° to the northwest of the naked eye star Psi Eridani. It is invisible to the naked eye with an apparent visual magnitude 12.20. Parallax measurements give a distance estimate of 17.5 light-years from the Sun. It is drifting further away with a radial velocity of +42.3 km/s. Roughly 104,000 years ago, the star is believed to have come to within 7.34 ± 0.16 light-years of the Solar System.

Gliese 251, also known as HIP 33226 or HD 265866, is a star located about 18 light years away from the Solar System. Located in the constellation of Gemini, it is the nearest star in this constellation. It is located near the boundary with Auriga, 49 arcminutes away from the bright star Theta Geminorum; due to its apparent magnitude of +9.89 it cannot be observed with the naked eye. The closest star to Gliese 251 is QY Aurigae, which is located 3.5 light years away.

<span class="mw-page-title-main">HN Librae</span> Star in the constellation Libra

HN Librae, also known as Gliese 555, is a small star with one or more orbiting exoplanets in the constellation Libra. With an apparent visual magnitude of 11.32, it can only be viewed through a telescope. The system is located at a distance of 20.4 light years based on parallax measurements, but is drifting closer to the Sun with a radial velocity of −1.4 km/s. It does not appear to belong to any known stellar moving group or association.

Gliese 393, or GJ 393, is a single star with an orbiting exoplanet companion in the equatorial constellation of Sextans, positioned about 1.5° to the NNW of Beta Sextantis. At an apparent visual magnitude of 9.65, it is much too faint to be seen with the unaided eye. This star is located at a distance of 22.9 light years from the Sun based on parallax, and is drifting further away with a radial velocity of +8.3 km/s. It has a large proper motion, traversing the celestial sphere at the rate of 0.950″ per year. The net velocity of this star relative to the Sun is 32.9 km/s. It shares a similar space motion as members of the AB Doradus moving group, but is considered a random interloper.

<span class="mw-page-title-main">GJ 1151</span> Red dwarf star

GJ 1151 is a star located in the northern circumpolar constellation of Ursa Major at a distance of 26.2 light-years from the Sun. It has a reddish hue and is too faint to be visible to the naked eye with an apparent visual magnitude of 14.0 The star is moving closer with a radial velocity of −36 km/s, and has a relatively large proper motion, traversing the celestial sphere at a rate of 1.815″·yr−1.

<span class="mw-page-title-main">GL Virginis</span> Star in the constellation Virgo

GL Virginis, also known as G 12-30, is a star in the constellation of Virgo. It is a faint red dwarf, like more than 70% of the stars located within 10 parsecs of the Solar System; its magnitude visual magnitude is 13.898, making it impossible to see with the naked eye.

Gliese 49 is a star in the northern constellation of Cassiopeia. Visually, it is located 106 arcminutes north of the bright star γ Cassiopeiae. With an apparent visual magnitude of 9.56, it is not observable with the naked eye. It is located, based on the reduction of parallax data of Gaia, 32.1 light-years away from the Solar System. The star is drifting closer to the Sun with a radial velocity of −6 km/s.

<span class="mw-page-title-main">Gliese 15 Ac</span> Subjovian planet orbiting Gliese 15 A

Gliese 15 Ac is an exoplanet orbiting the nearby red dwarf star Gliese 15 A, which is part of a binary star system located about 11.6 light-years from the Sun. The planet was first proposed in October 2017 using radial velocity data from the CARMENES spectrograph, combined with measurements from the HARPS and HIRES spectrographs, and its existence was confirmed in April 2018 using HARPS-N data. It has a minimum mass 36 times that of Earth and orbits at around 5.4 astronomical units with a period of 7,600 days, an orbit which may have been sculpted by interaction with the companion star, Gliese 15 B. As of 2020, Gliese 15 Ac is the longest-period sub-Jovian planet discovered by radial velocity.

Gliese 514, also known as BD+11 2576 or HIP 65859, is a M-type main-sequence star, in the constellation Virgo 24.85 light-years away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988.

References

  1. 1 2 3 4 5 6 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 3 4 5 6 7 8 9 Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation". Astronomy Letters. 38 (5): 331. arXiv: 1108.4971 . Bibcode:2012AstL...38..331A. doi:10.1134/S1063773712050015. S2CID   119257644.
  3. Fuhrmeister, B.; et al. (2019), "The CARMENES search for exoplanets around M dwarfs. Period search in H{alpha}, Na I D, and Ca II IRT lines", Astronomy & Astrophysics, 623: A24, arXiv: 1901.05173 , Bibcode:2019A&A...623A..24F, doi:10.1051/0004-6361/201834483, S2CID   119064800
  4. Boyajian, Tabetha S.; von Braun, Kaspar; van Belle, Gerard; McAlister, Harold A.; Brummelaar, Theo A. ten; Kane, Stephen R.; Muirhead, Phil; Jones, Jeremy; White, Russel; Schaefer, Gail; Ciardi, David; Henry, Todd; López-Morales, Mercedes; Ridgway, Stephen; Gies, Douglas (2012-10-01). "Stellar Diameters and Temperatures II. Main Sequence K & M Stars". The Astrophysical Journal. 757 (2): 112. arXiv: 1208.2431 . doi:10.1088/0004-637X/757/2/112. ISSN   0004-637X.
  5. Abia, C.; et al. (2020), "The CARMENES search for exoplanets around M dwarfs: Rubidium abundances in nearby cool stars", Astronomy & Astrophysics, 642: A227, arXiv: 2009.00876 , Bibcode:2020A&A...642A.227A, doi:10.1051/0004-6361/202039032, S2CID   221447685
  6. 1 2 Lindgren, Sara; Heiter, Ulrike (2017). "Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature". Astronomy and Astrophysics. 604: A97. arXiv: 1705.08785 . Bibcode:2017A&A...604A..97L. doi:10.1051/0004-6361/201730715. S2CID   119216828.
  7. 1 2 Suárez Mascareño, A.; et al. (September 2015). "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators". Monthly Notices of the Royal Astronomical Society. 452 (3): 2745–2756. arXiv: 1506.08039 . Bibcode:2015MNRAS.452.2745S. doi: 10.1093/mnras/stv1441 .
  8. "HD 216899". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2021-11-23.
  9. Lamman, Claire; et al. (2020), "Robo-AO M-dwarf Multiplicity Survey: Catalog", The Astronomical Journal, 159 (4): 139, arXiv: 2001.05988 , Bibcode:2020AJ....159..139L, doi: 10.3847/1538-3881/ab6ef1 , S2CID   210718832
  10. Barnes, J. R.; et al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv: 1906.04644 [astro-ph.EP].
  11. Mignon, L.; Delfosse, X.; et al. (September 2024). "Radial velocity homogeneous analysis of M dwarfs observed with HARPS". Astronomy & Astrophysics . 689: A32. doi: 10.1051/0004-6361/202346570 .