Ribose isomerase

Last updated
ribose isomerase
Identifiers
EC no. 5.3.1.20
CAS no. 57534-76-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a ribose isomerase (EC 5.3.1.20) is an enzyme that catalyzes the chemical reaction

D-ribose D-ribulose

Hence, this enzyme has one substrate, D-ribose, and one product, D-ribulose.

This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The systematic name of this enzyme class is D-ribose aldose-ketose-isomerase. Other names in common use include D-ribose isomerase, and D-ribose ketol-isomerase.

Related Research Articles

An aldose is a monosaccharide with a carbon backbone chain with a carbonyl group on the endmost carbon atom, making it an aldehyde, and hydroxyl groups connected to all the other carbon atoms. Aldoses can be distinguished from ketoses, which have the carbonyl group away from the end of the molecule, and are therefore ketones.

Isomerases are a general class of enzymes that convert a molecule from one isomer to another. Isomerases facilitate intramolecular rearrangements in which bonds are broken and formed. The general form of such a reaction is as follows:

<span class="mw-page-title-main">Ribulose</span> Monosaccharide with five carbon atoms and a ketone functional group

Ribulose is a ketopentose — a monosaccharide containing five carbon atoms, and including a ketone functional group. It has chemical formula C5H10O5. Two enantiomers are possible, d-ribulose and l-ribulose. d-Ribulose is the diastereomer of d-xylulose.

<span class="mw-page-title-main">Transketolase</span> Enzyme involved in metabolic pathways

Transketolase is an enzyme that, in humans, is encoded by the TKT gene. It participates in both the pentose phosphate pathway in all organisms and the Calvin cycle of photosynthesis. Transketolase catalyzes two important reactions, which operate in opposite directions in these two pathways. In the first reaction of the non-oxidative pentose phosphate pathway, the cofactor thiamine diphosphate accepts a 2-carbon fragment from a 5-carbon ketose (D-xylulose-5-P), then transfers this fragment to a 5-carbon aldose (D-ribose-5-P) to form a 7-carbon ketose (sedoheptulose-7-P). The abstraction of two carbons from D-xylulose-5-P yields the 3-carbon aldose glyceraldehyde-3-P. In the Calvin cycle, transketolase catalyzes the reverse reaction, the conversion of sedoheptulose-7-P and glyceraldehyde-3-P to pentoses, the aldose D-ribose-5-P and the ketose D-xylulose-5-P.

The formose reaction, discovered by Aleksandr Butlerov in 1861, and hence also known as the Butlerov reaction, involves the formation of sugars from formaldehyde. The term formose is a portmanteau of formaldehyde and aldose.

In enzymology, a 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, an arabinose-5-phosphate isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, an arabinose isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a corticosteroid side-chain-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a D-lyxose ketol-isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a galactose-6-phosphate isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronate isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a hydroxypyruvate isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">L-arabinose isomerase</span>

In enzymology, a L-arabinose isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a L-rhamnose isomerase is an enzyme that catalyzes the chemical reaction

In enzymology, a mannose isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylanthranilate isomerase</span> Enzyme involved in tryptophan synthesis

In enzymology, a phosphoribosylanthranilate isomerase (PRAI) is an enzyme that catalyzes the third step of the synthesis of the amino acid tryptophan.

<span class="mw-page-title-main">Ribose-5-phosphate isomerase</span>

Ribose-5-phosphate isomerase (Rpi) encoded by the RPIA gene is an enzyme that catalyzes the conversion between ribose-5-phosphate (R5P) and ribulose-5-phosphate (Ru5P). It is a member of a larger class of isomerases which catalyze the interconversion of chemical isomers. It plays a vital role in biochemical metabolism in both the pentose phosphate pathway and the Calvin cycle. The systematic name of this enzyme class is D-ribose-5-phosphate aldose-ketose-isomerase.

In enzymology, a S-methyl-5-thioribose-1-phosphate isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Xylose isomerase</span> Class of enzymes

In enzymology, a xylose isomerase is an enzyme that catalyzes the interconversion of D-xylose and D-xylulose. This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The isomerase has now been observed in nearly a hundred species of bacteria. Xylose-isomerases are also commonly called fructose-isomerases due to their ability to interconvert glucose and fructose. The systematic name of this enzyme class is D-xylose aldose-ketose-isomerase. Other names in common use include D-xylose isomerase, D-xylose ketoisomerase, and D-xylose ketol-isomerase.

References