SDSS J0106−1000

Last updated
SDSS J0106−1000
Observation data
Epoch J2000        Equinox J2000
Constellation Cetus
Right ascension 01h 06m 57.399s [1]
Declination −10° 00 03.33 [1]
Distance 7,800  ly
Other designations
SDSS J 010657.39 −100003.3, SDSS J0106−1000, J0106−1000
Database references
SIMBAD data

SDSS J0106-1000 (full name: SDSS J010657.39-100003.3) is a binary star located about 7,800 light-years from Earth in the constellation Cetus.

This system consists of two white dwarfs orbiting about each other once every 39 minutes. It was one of the shortest-period detached binary white dwarf systems known in 2011 [2] They are separated from each other by only 32% of the radius of the Sun, so that each dwarf is tidally distorting the other. Despite their proximity to each other, this does not form an eclipsing binary system because the inclination of the orbital plane to the line of sight to the Earth is about 67°± 13°.

As the two orbit, they are emitting gravitational radiation, causing the two white dwarfs to gradually draw closer together. This will cause the two stars to merge in about 37 million years. Since their masses are 0.17 and 0.43 solar masses, the resulting combined mass will be 0.60 times the mass of the Sun. At this point they are expected to form a subdwarf B star that will begin generating energy through the nuclear fusion of helium. [3]

Related Research Articles

<span class="mw-page-title-main">Binary star</span> System of two stars orbiting each other

A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in which case they are called visual binaries. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy or astrometry. If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called eclipsing binaries, or, together with other binaries that change brightness as they orbit, photometric binaries.

A visual binary is a gravitationally bound binary star system that can be resolved into two stars. These stars are estimated, via Kepler's third law, to have periods ranging from a few years to thousands of years. A visual binary consists of two stars, usually of a different brightness. Because of this, the brighter star is called the primary and the fainter one is called the companion. If the primary is too bright, relative to the companion, this can cause a glare making it difficult to resolve the two components. However, it is possible to resolve the system if observations of the brighter star show it to wobble about a centre of mass. In general, a visual binary can be resolved into two stars with a telescope if their centres are separated by a value greater than or equal to one arcsecond, but with modern professional telescopes, interferometry, or space-based equipment, stars can be resolved at closer distances.

<span class="mw-page-title-main">Variable star</span> Star whose brightness fluctuates, as seen from Earth

A variable star is a star whose brightness as seen from Earth changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:

<span class="mw-page-title-main">Musca</span> Constellation in the southern celestial hemisphere

Musca is a small constellation in the deep southern sky. It was one of 12 constellations created by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman, and it first appeared on a celestial globe 35 cm (14 in) in diameter published in 1597 in Amsterdam by Plancius and Jodocus Hondius. The first depiction of this constellation in a celestial atlas was in Johann Bayer's Uranometria of 1603. It was also known as Apis for 200 years. Musca remains below the horizon for most Northern Hemisphere observers.

16 Cygni or 16 Cyg is a triple star system approximately 69 light-years away from Earth in the constellation of Cygnus. It consists of two Sun-like yellow dwarf stars, 16 Cygni A and 16 Cygni B, together with a red dwarf, 16 Cygni C. In 1996 an extrasolar planet was discovered in an eccentric orbit around 16 Cygni B.

MACHO-1997-BLG-41, commonly abbreviated as 97-BLG-41 or MACHO-97-BLG-41, was a gravitational microlensing event located in Sagittarius which occurred in July 1999. The source star is likely a giant or subgiant star of spectral type K located at a distance of around 8 kiloparsecs. The lens star is a binary system approximately 10,000 light-years away in the constellation Sagittarius. The two stars are separated from each other by about 0.9 AU and have an orbital period of around 1.5 years. The most likely mass of the system is about 0.3 times that of the Sun. Star A and star B are both red dwarfs.

<span class="mw-page-title-main">IK Pegasi</span> Star in the constellation Pegasus

IK Pegasi is a binary star system in the constellation Pegasus. It is just luminous enough to be seen with the unaided eye, at a distance of about 154 light years from the Solar System.

<span class="mw-page-title-main">HM Cancri</span> Binary star in the constellation Cancer

HM Cancri (also known as HM Cnc or RX J0806.3+1527) is a binary star system about 1,600 light-years (490 pc; 1.5×1016 km) away. It comprises two dense white dwarfs orbiting each other once every 5.4 minutes, at an estimated distance of only 80,000 kilometres (50,000 mi) apart (about 1/5 the distance between the Earth and the Moon). The two stars orbit each other at speeds in excess of 400 kilometres per second (890,000 mph). The stars are estimated to be about half as massive as the Sun. Like typical white dwarfs, they are extremely dense, being composed of degenerate matter, and so have radii on the order of the Earth's radius. Astronomers believe that the two stars will eventually merge, based on data from many X-ray satellites, such as Chandra X-Ray Observatory, XMM-Newton and the Swift Gamma-Ray Burst Mission. These data show that the orbital period of the two stars is steadily decreasing at a rate of 1.2 milliseconds per year as they thus are getting closer by approximately 60 centimetres (2.0 ft) per day. At this rate, they can be expected to merge in approximately 340,000 years. With a revolution period of 5.4 minutes, HM Cancri is the shortest orbital period binary white dwarf system currently known.

A substellar object, sometimes called a substar, is an astronomical object, the mass of which is smaller than the smallest mass at which hydrogen fusion can be sustained. This definition includes brown dwarfs and former stars similar to EF Eridani B, and can also include objects of planetary mass, regardless of their formation mechanism and whether or not they are associated with a primary star.

<span class="mw-page-title-main">Circumbinary planet</span> Planet that orbits two stars instead of one

A circumbinary planet is a planet that orbits two stars instead of one. The two stars orbit each other in a binary system, while the planet typically orbits farther from the center of the system than either of the two stars. In contrast, circumstellar planets in a binary system have stable orbits around one of the two stars, closer in than the orbital distance of the other star. Studies in 2013 showed that there is a strong hint that a circumbinary planet and its stars originate from a single disk.

<span class="mw-page-title-main">NN Serpentis</span> Eclipsing post-common envelope binary star system in the constellation Serpens

NN Serpentis is an eclipsing post-common envelope binary system approximately 1670 light-years away. The system comprises an eclipsing white dwarf and red dwarf. The two stars orbit each other every 0.13 days.

<span class="mw-page-title-main">Stellar collision</span> Coming together of two stars

A stellar collision is the coming together of two stars caused by stellar dynamics within a star cluster, or by the orbital decay of a binary star due to stellar mass loss or gravitational radiation, or by other mechanisms not yet well understood.

Kepler-39b, is a confirmed extrasolar object discovered orbiting the F-type star Kepler-39. It is eighteen times more massive than Jupiter, and is about five fourths its size. The planet orbits its host star at about 15% of the average distance between the Earth and Sun. Kepler-39b's host star was investigated by European astronomers along with three other stars, including the host star of Kepler-40b, using equipment at the Haute-Provence Observatory in France. Collection and analysis of data in late 2010 led to the confirmation of Kepler-39b. The discovery paper was published in a journal on June 6, 2011.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">V1054 Ophiuchi</span> Star system in the constellation Ophiuchus

V1054 Ophiuchi, together with the star Gliese 643, is a nearby quintuple star system. In the constellation Ophiuchus at a distance of 21.19 light-years. It consists of five stars, all of which are red dwarfs. The alternative designation of Wolf 630 forms the namesake of a moving group of stars that share a similar motion through space.

<span class="mw-page-title-main">Kepler-47c</span> Kepler-47c is a gas giant.

Kepler-47c is an exoplanet orbiting the binary star system Kepler-47, the outermost of three such planets discovered by NASA's Kepler spacecraft. The system, also involving two other exoplanets, is located about 3,400 light-years away.

<span class="mw-page-title-main">Kepler-47b</span> Circumbinary gas giant exoplanet orbiting the Kepler-47 star system

Kepler-47b is an exoplanet orbiting the binary star system Kepler-47, the innermost of three such planets discovered by NASA's Kepler spacecraft. The system, also involving two other exoplanets, is located about 3,400 light-years away.

<span class="mw-page-title-main">Kappa Fornacis</span> Star system in the constellation Fornax

Kappa Fornacis is a star system that lies approximately 72 light-years away. The system consists of a somewhat evolved primary orbited by a massive, 'dark' secondary that is actually itself a close red dwarf binary, making a hierarchal triple system.

<span class="mw-page-title-main">Hen 2-428</span> Planetary nebula with a binary white dwarf core

Hen 2-428 is a planetary nebula with a binary double white dwarf system core. This core star system is the first discovered candidate for Type Ia supernova through binary white dwarf merger process. At the time of its discovery, the star system at the core was the heaviest known double white dwarf binary star system.

<span class="mw-page-title-main">WD J1953−1019</span> Star system in the constellation Aquila

WD J1953−1019 is a hierarchical triple system of white dwarfs located at about 130 parsecs from the Earth. This is the first triple system of white dwarfs to be resolved. The three white dwarfs have an atmosphere of pure hydrogen and a mass of about 0.6 times that of the Sun.

References

  1. 1 2 "SDSS J010657.39-100003.3—White Dwarf". SIMBAD. Centre de Données astronomiques de Strasbourg. Retrieved 2011-04-11.
  2. David Aguilar; Christine Pulliam (2011-04-06). "Two Dying Stars Reborn as One". SpaceRef. Retrieved 2011-04-10.
  3. Kilic, Mukremin; et al. (March 24, 2011). "The shortest period detached binary white dwarf system". Monthly Notices of the Royal Astronomical Society . 413 (1): L101–L105. arXiv: 1103.2354 . Bibcode:2011MNRAS.413L.101K. doi:10.1111/j.1745-3933.2011.01044.x. S2CID   119289545.