Abell 222

Last updated

Abell 222
Observation data (Epoch J2000)
Constellation(s) Cetus
Right ascension 01h 37m 27.4s [1]
Declination −12° 58 45 [1]
Brightest memberLEDA 944643 [2]
Richness class 3 [3]
Bautz–Morgan classification II-III [3]
Velocity dispersion 1,014 km/s [4]
Redshift 0.2110 [5]
Distance 2.4  Gly (740  Mpc) [6]
ICM temperature 3.77 ± 0.15 keV [4]
Other designations
RXC J0137.4-1259 [1]
See also: Galaxy group, Galaxy cluster, List of galaxy groups and clusters

Abell 222 is a galaxy cluster in the constellation of Cetus. It holds thousands of galaxies together. It is located at a distance of 2.4 billion light-years from Earth. [6]

Contents

Discovery of dark matter

Astronomers noticed an invisible string of matter was warping spacetime between Abell 222 and Abell 223. Upon further examination by using images from the Japanese Subaru telescope, astronomers discovered that this "invisible matter" is in fact dark matter. The astronomers used gravitational lensing to detect the dark matter filaments. [7] The cluster is connected by a filament of dark matter to Abell 223 that is permeated by hot X-ray emitting gas. [8] Further research shows that this filament only contains about 20 percent of normal matter, the rest is assumed to be dark matter. This is seen to be in good agreement with the cosmological standard model. [9] This means that the two bodies would form the Abell 222/Abell 223 Supercluster as defined by the IAU. [10]

Baryonic matter evidence

About 5% of the universe is estimated to be made up of baryonic or ordinary matter which contains protons and neutrons, also known as baryons, and electrons. Baryons and electrons are the foundation for atoms. Astronomers have not been able to locate the full 5% of baryonic matter within other galaxies, stars or gases. After observing gas that connects Abell 222 and Abell 223, scientists believe that a significant part of the missing baryonic matter is within the gas that bridges the two galaxy clusters. This was difficult to locate due to the fact that the gas had a very low density, which made it hard to detect. This discovery was made possible because of Abell 222's location. It is within Earth's line of sight, so scientists were able to see a strong concentration of this extremely distant gas with the latest high-power infrared and X-ray telescopes, within a section of the sky. [11]

See also

Related Research Articles

In astronomy, dark matter is a hypothetical form of matter that appears not to interact with light or the electromagnetic field. Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be seen. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies.

<span class="mw-page-title-main">Galaxy groups and clusters</span> Largest known gravitationally bound object in universe; aggregation of galaxies

Galaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now. Groups and clusters may contain ten to thousands of individual galaxies. The clusters themselves are often associated with larger, non-gravitationally bound, groups called superclusters.

<span class="mw-page-title-main">Galaxy cluster</span> Structure made up of a gravitationally-bound aggregation of hundreds of galaxies

A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-largest known gravitationally bound structures in the universe after some superclusters (of which only one, the Shapley Supercluster, is known to be bound). They were believed to be the largest known structures in the universe until the 1980s, when superclusters were discovered. One of the key features of clusters is the intracluster medium (ICM). The ICM consists of heated gas between the galaxies and has a peak temperature between 2–15 keV that is dependent on the total mass of the cluster. Galaxy clusters should not be confused with galactic clusters (also known as open clusters), which are star clusters within galaxies, or with globular clusters, which typically orbit galaxies. Small aggregates of galaxies are referred to as galaxy groups rather than clusters of galaxies. The galaxy groups and clusters can themselves cluster together to form superclusters.

<span class="mw-page-title-main">Virgo Supercluster</span> Galactic supercluster containing the Virgo Cluster

The Virgo Supercluster or the Local Supercluster was a formerly defined supercluster containing the Virgo Cluster and Local Group, which itself contains the Milky Way and Andromeda galaxies, as well as others. At least 100 galaxy groups and clusters are located within its diameter of 33 megaparsecs. The Virgo SC is one of about 10 million superclusters in the observable universe and is in the Pisces–Cetus Supercluster Complex, a galaxy filament.

A MAssive Compact Halo Object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galaxy halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space unassociated with any planetary system. Since MACHOs are not luminous, they are hard to detect. MACHO candidates include black holes or neutron stars as well as brown dwarfs and unassociated planets. White dwarfs and very faint red dwarfs have also been proposed as candidate MACHOs. The term was coined by astrophysicist Kim Griest.

The Great Wall, sometimes specifically referred to as the CfA2 Great Wall, is an immense galaxy filament. It is one of the largest known superstructures in the observable universe.

<span class="mw-page-title-main">Hydra–Centaurus Supercluster</span> Closest neighboring galaxy supercluster

The Hydra–Centaurus Supercluster, or the Hydra and Centaurus Superclusters, was a previously defined supercluster in two parts, which prior to the identification of Laniakea Supercluster in 2014 is the closest neighbour of the former Virgo Supercluster. Its center is located about 39 Mpc (127 Mly) away.

A dark galaxy is a hypothesized galaxy with no stars. They received their name because they have no visible stars but may be detectable if they contain significant amounts of gas. Astronomers have long theorized the existence of dark galaxies, but there are no confirmed examples to date. Dark galaxies are distinct from intergalactic gas clouds caused by galactic tidal interactions, since these gas clouds do not contain dark matter, so they do not technically qualify as galaxies. Distinguishing between intergalactic gas clouds and galaxies is difficult; most candidate dark galaxies turn out to be tidal gas clouds. The best candidate dark galaxies to date include HI1225+01, AGC229385, and numerous gas clouds detected in studies of quasars.

<span class="mw-page-title-main">Coma Cluster</span> Cluster of galaxies in the constellation Coma Berenices

The Coma Cluster is a large cluster of galaxies that contains over 1,000 identified galaxies. Along with the Leo Cluster, it is one of the two major clusters comprising the Coma Supercluster. It is located in and takes its name from the constellation Coma Berenices.

<span class="mw-page-title-main">Smith's Cloud</span> High velocity cloud in the constellation Aquila

Smith's Cloud is a high-velocity cloud of hydrogen gas located in the constellation Aquila at Galactic coordinates l = 39°, b = −13°. The cloud was discovered in 1963 by Gail Bieger, née Smith, who was an astronomy student at Leiden University in the Netherlands.

<span class="mw-page-title-main">NGC 4889</span> Galaxy in the constellation Coma Berenices

NGC 4889 is an E4 supergiant elliptical galaxy. It was discovered in 1785 by the British astronomer Frederick William Herschel I, who catalogued it as a bright, nebulous patch. The brightest galaxy within the northern Coma Cluster, it is located at a median distance of 94 million parsecs from Earth. At the core of the galaxy is a supermassive black hole that heats the intracluster medium through the action of friction from infalling gases and dust. The gamma ray bursts from the galaxy extend out to several million light years of the cluster.

<span class="mw-page-title-main">Warm–hot intergalactic medium</span> Plasma that cosmologists believe exists between galaxies

The warm–hot intergalactic medium (WHIM) is the sparse, warm-to-hot (105 to 107 K) plasma that cosmologists believe to exist in the spaces between galaxies and to contain 40–50% of the baryonic 'normal matter' in the universe at the current epoch. The WHIM can be described as a web of hot, diffuse gas stretching between galaxies, and consists of plasma, as well as atoms and molecules, in contrast to dark matter. The WHIM is a proposed solution to the missing baryon problem, where the observed amount of baryonic matter does not match theoretical predictions from cosmology.

<span class="mw-page-title-main">MACS J0717.5+3745</span> Galaxy cluster in the constellation Auriga

MACS J0717.5+3745 is a large galaxy cluster located 5.4 billion light years away in the constellation Auriga, appearing in the Massive Cluster Survey (MACS).

<span class="mw-page-title-main">Abell 1185</span> Galaxy cluster in the constellation Ursa Major

Abell 1185 is a galaxy cluster located in the constellation Ursa Major. It is approximately 400 million light-years away from Earth and spans one million light-years across. It is a member of the Leo Supercluster. One of its brightest galaxies is NGC 3550.

Abell 223 is a galaxy cluster. It is located at a distance of 2.4 billion light-years from Earth. The cluster is connected to nearby cluster Abell 222 by a filament of matter. Research has shown that only 20% of that matter is normal. The rest is thought to be dark matter. This means that this would form the Abell 222/ Abell 223 Supercluster as we understand them.

<span class="mw-page-title-main">Phoenix Cluster</span> Galaxy cluster in the constellation Phoenix

The Phoenix Cluster is a massive, Abell class type I galaxy cluster located at its namesake, southern constellation of Phoenix. It was initially detected in 2010 during a 2,500 square degree survey of the southern sky using the Sunyaev–Zeldovich effect by the South Pole Telescope collaboration. It is one of the most massive galaxy clusters known, with the mass on the order of 2×1015M, and is the most luminous X-ray cluster discovered, producing more X-rays than any other known massive cluster. It is located at a comoving distance of 8.61 billion light-years from Earth. About 42 member galaxies were identified and currently listed in the SIMBAD Astronomical Database, though the real number may be as high as 1,000.

<span class="mw-page-title-main">Musket Ball Cluster</span> Collision of two galaxy clusters in the constellation Cancer

The Musket Ball Cluster is a galaxy cluster that exhibits separation between its baryonic matter and dark matter components. The cluster is a recent merger of two galaxy clusters. It is named after the Bullet Cluster, as it is a slower collision, and older than the Bullet Cluster. This cluster is further along the process of merger than the Bullet Cluster, being some 500 million years older, at 700 million years old. The cluster was discovered in 2011 by the Deep Lens Survey. As of 2012, it is one of the few galaxy clusters to show separation between its dark matter and baryonic matter components.

<span class="mw-page-title-main">Laniakea Supercluster</span> Galaxy supercluster that is home to the Milky Way Galaxy and many more galaxies

The Laniakea Supercluster is the galaxy supercluster that is home to the Milky Way and approximately 100,000 other nearby galaxies.

<span class="mw-page-title-main">Saraswati Supercluster</span> Supercluster of galaxies in the Pisces constellation

The Saraswati Supercluster is a massive galaxy supercluster about 1.2 gigaparsecs (4 billion light years) away within the Stripe 82 region of SDSS, in the direction of the constellation Pisces. It is one of the largest structures found in the universe, with a major axis in diameter of about 200 Mpc (652 million light years). It consists of at least 43 galaxy clusters, and has the mass of 2 × 1016 M, forming a galaxy filament.

In cosmology, the missing baryon problem is an observed discrepancy between the amount of baryonic matter detected from shortly after the Big Bang and from more recent epochs. Observations of the cosmic microwave background and Big Bang nucleosynthesis studies have set constraints on the abundance of baryons in the early universe, finding that baryonic matter accounts for approximately 4.8% of the energy contents of the Universe. At the same time, a census of baryons in the recent observable universe has found that observed baryonic matter accounts for less than half of that amount. This discrepancy is commonly known as the missing baryon problem. The missing baryon problem is different from the dark matter problem, which is non-baryonic in nature.

References

  1. 1 2 3 "ACO 222". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 24 November 2017.
  2. "2MASX J01373406-1259288". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 24 November 2017.
  3. 1 2 Abell, George O.; Corwin, Harold G. Jr.; Olowin, Ronald P. (May 1989). "A catalog of rich clusters of galaxies". Astrophysical Journal Supplement Series. 70 (May 1989): 1–138. Bibcode:1989ApJS...70....1A. doi: 10.1086/191333 . ISSN   0067-0049.
  4. 1 2 Durret, F; Laganá, T. F; Adami, C; Bertin, E (2010). "The clusters Abell 222 and Abell 223: A multi-wavelength view". Astronomy and Astrophysics. 517: A94. arXiv: 1005.3295 . Bibcode:2010A&A...517A..94D. doi:10.1051/0004-6361/201014566. S2CID   118464154.
  5. "NED results for object ABELL 0222". National Aeronautics and Space Administration / Infrared Processing and Analysis Center . Retrieved 24 November 2017.
  6. 1 2 Pete Spotts (5 July 2012). "Cosmic scaffolding uncovered? Scientists find thread of dark matter". The Christian Science Monitor . Christian Science Publishing Society . Retrieved 14 July 2012.
  7. "Dark Matter Filaments Detected in Abell 222 And Abel 223 Supercluster". Science 2.0. 27 August 2014. Retrieved 16 October 2017.
  8. "ID: SEMHZOZXUFF: Galaxy clusters Abell 222 and Abell 223". esa. Retrieved 24 September 2012.
  9. "Eine Brücke aus dunkler Materie zwischen zwei Galaxienhaufen". Neue Zürcher Zeitung (in German). 17 July 2012. Archived from the original on 1 June 2024. Retrieved 24 September 2012.
  10. Dietrich, Jörg. "The Abell 222/223 Supercluster with dark matter Filament". University of Michigan/University Observatory Munich. Retrieved 5 May 2021.
  11. "Do Abell 222 And Abell 223 Contain The Universe's 'Missing' Baryonic Matter?". Science 2.0. 27 August 2014. Retrieved 16 October 2017.