SSE5

Last updated

The SSE5 (short for Streaming SIMD Extensions version 5) was a SIMD instruction set extension proposed by AMD on August 30, 2007 as a supplement to the 128-bit SSE core instructions in the AMD64 architecture.

Contents

AMD chose not to implement SSE5 as originally proposed. In May 2009, AMD replaced SSE5 with three smaller instruction set extensions named as XOP, FMA4, and F16C, which retain the proposed functionality of SSE5, but encode the instructions differently for better compatibility with Intel's proposed AVX instruction set.

The three SSE5-derived instruction sets were introduced in the Bulldozer processor core, released in October 2011 on a 32 nm process. [1]

Compatibility

AMD's SSE5 extension bundle does not include the full set of Intel's SSE4 instructions, making it a competitor to SSE4 rather than a successor.

SSE5 enhancements

The proposed SSE5 instruction set consisted of 170 instructions (including 46 base instructions), many of which are designed to improve single-threaded performance. Some SSE5 instructions are 3-operand instructions, the use of which will increase the average number of instructions per cycle achievable by x86 code. [2] Selected new instructions include: [3]

AMD claims SSE5 will provide dramatic performance improvements, particularly in high-performance computing (HPC), multimedia, and computer security applications, including a 5x performance gain for Advanced Encryption Standard (AES) encryption and a 30% performance gain for discrete cosine transform (DCT) used to process video streams. [2]

2009 revision

The SSE5 specification included a proposed extension to the general coding scheme of x86 instructions in order to allow instructions to have more than two operands. In 2008, Intel announced their planned AVX instruction set which proposed a different way of coding instructions with more than two operands. The two proposed coding schemes, SSE5 and AVX, are mutually incompatible, although the AVX scheme has certain advantages over the SSE5 scheme: most importantly, AVX has plenty of space for future extensions, including larger vector sizes.

In May 2009, AMD published a revised specification for the planned future instructions. This revision changes the coding scheme to make it compatible with the AVX scheme, but with a differing prefix byte in order to avoid overlap between instructions introduced by AMD and instructions introduced by Intel.

The revised instruction set no longer carries the name SSE5, which has been criticized for being misleading, but most of the instructions in the new revision are functionally identical to the original SSE5 specification—only the way the instructions are coded differs. The planned additions to the AMD instruction set consists of three subsets:

  1. XOP: Integer vector multiply–accumulate instructions, integer vector horizontal addition, integer vector compare, shift and rotate instructions, byte permutation and conditional move instructions, floating point fraction extraction.
  2. FMA4: Floating-point vector multiply–accumulate.
  3. F16C: Half-precision floating-point conversion.

These new instruction sets include support for future extensions for the vector size from 128 bits to 256 bits. [4]

See also

Related Research Articles

x86 Family of instruction set architectures

x86 is a family of complex instruction set computer (CISC) instruction set architectures initially developed by Intel based on the Intel 8086 microprocessor and its 8088 variant. The 8086 was introduced in 1978 as a fully 16-bit extension of Intel's 8-bit 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186, 80286, 80386 and 80486 processors. Colloquially, their names were "186", "286", "386" and "486".

<span class="mw-page-title-main">Single instruction, multiple data</span> Type of parallel processing

Single instruction, multiple data (SIMD) is a type of parallel processing in Flynn's taxonomy. SIMD can be internal and it can be directly accessible through an instruction set architecture (ISA), but it should not be confused with an ISA. SIMD describes computers with multiple processing elements that perform the same operation on multiple data points simultaneously.

<span class="mw-page-title-main">MMX (instruction set)</span> Instruction set designed by Intel

MMX is a single instruction, multiple data (SIMD) instruction set architecture designed by Intel, introduced on January 8, 1997 with its Pentium P5 (microarchitecture) based line of microprocessors, named "Pentium with MMX Technology". It developed out of a similar unit introduced on the Intel i860, and earlier the Intel i750 video pixel processor. MMX is a processor supplementary capability that is supported on IA-32 processors by Intel and other vendors as of 1997.

In computing, Streaming SIMD Extensions (SSE) is a single instruction, multiple data (SIMD) instruction set extension to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III series of central processing units (CPUs) shortly after the appearance of Advanced Micro Devices (AMD's) 3DNow!. SSE contains 70 new instructions, most of which work on single precision floating-point data. SIMD instructions can greatly increase performance when exactly the same operations are to be performed on multiple data objects. Typical applications are digital signal processing and graphics processing.

x86-64 64-bit version of x86 architecture

x86-64 is a 64-bit version of the x86 instruction set, first announced in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mode.

SSE2 is one of the Intel SIMD processor supplementary instruction sets introduced by Intel with the initial version of the Pentium 4 in 2000. It extends the earlier SSE instruction set, and is intended to fully replace MMX. Intel extended SSE2 to create SSE3 in 2004. SSE2 added 144 new instructions to SSE, which has 70 instructions. Competing chip-maker AMD added support for SSE2 with the introduction of their Opteron and Athlon 64 ranges of AMD64 64-bit CPUs in 2003.

The x86 instruction set refers to the set of instructions that x86-compatible microprocessors support. The instructions are usually part of an executable program, often stored as a computer file and executed on the processor.

Supplemental Streaming SIMD Extensions 3 is a SIMD instruction set created by Intel and is the fourth iteration of the SSE technology.

SSE4 is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper; more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in Beijing, in the presentation. SSE4 is fully compatible with software written for previous generations of Intel 64 and IA-32 architecture microprocessors. All existing software continues to run correctly without modification on microprocessors that incorporate SSE4, as well as in the presence of existing and new applications that incorporate SSE4.

The AMD Bulldozer Family 15h is a microprocessor microarchitecture for the FX and Opteron line of processors, developed by AMD for the desktop and server markets. Bulldozer is the codename for this family of microarchitectures. It was released on October 12, 2011, as the successor to the K10 microarchitecture.

Advanced Vector Extensions are SIMD extensions to the x86 instruction set architecture for microprocessors from Intel and Advanced Micro Devices (AMD). They were proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge processor shipping in Q1 2011 and later by AMD with the Bulldozer processor shipping in Q3 2011. AVX provides new features, new instructions, and a new coding scheme.

The XOP instruction set, announced by AMD on May 1, 2009, is an extension to the 128-bit SSE core instructions in the x86 and AMD64 instruction set for the Bulldozer processor core, which was released on October 12, 2011. However AMD removed support for XOP from Zen (microarchitecture) onward.

The VEX prefix and VEX coding scheme are an extension to the IA-32 and x86-64 instruction set architecture for microprocessors from Intel, AMD and others.

The FMA instruction set is an extension to the 128 and 256-bit Streaming SIMD Extensions instructions in the x86 microprocessor instruction set to perform fused multiply–add (FMA) operations. There are two variants:

AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD instructions for x86 instruction set architecture (ISA) proposed by Intel in July 2013, and first implemented in the 2016 Intel Xeon Phi x200, and then later in a number of AMD and other Intel CPUs. AVX-512 consists of multiple extensions that may be implemented independently. This policy is a departure from the historical requirement of implementing the entire instruction block. Only the core extension AVX-512F is required by all AVX-512 implementations.

The F16C instruction set is an x86 instruction set architecture extension which provides support for converting between half-precision and standard IEEE single-precision floating-point formats.

The EVEX prefix and corresponding coding scheme is an extension to the 32-bit x86 (IA-32) and 64-bit x86-64 (AMD64) instruction set architecture. EVEX is based on, but should not be confused with the MVEX prefix used by the Knights Corner processor.

References

  1. Hruska, Joel (November 14, 2008). "AMD Fusion now pushed back to 2011". Ars Technica.
  2. 1 2 Vance, Ashlee (August 30, 2007). "AMD plots single thread boost with x86 extensions". The Register.
  3. "128-Bit SSE5 Instruction Set". AMD Developer Central. Archived from the original on January 15, 2008. Retrieved January 28, 2008.
  4. "AMD64 Architecture Programmer's Manual Volume 6: 128-Bit and 256-Bit XOP and FMA4 Instructions" (PDF). AMD. May 1, 2009.