SSETI Express (satellite)

Last updated

SSETI Express
NamesExpress-OSCAR-53 (XO-53)
Student Space Exploration & Technology Initiative Express
Mission type Technology demonstration
Operator European Space Agency
COSPAR ID 2005-043E OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 28894
Mission duration2 months (planned)
12.5 hours (achieved)
Spacecraft properties
Manufacturer European Space Agency
Launch mass62 kg (137 lb)
Payload mass24 kg (53 lb)
Dimensions56 × 56 × 90 cm (22 × 22 × 35 in)
Power20 watts
Start of mission
Launch date27 October 2005, 06:52:26 UTC [1]
Rocket Kosmos-3M
Launch site Plesetsk, Site 132/1
Contractor Yuzhnoye / NPO Polyot
Entered service27 October 2005
End of mission
Last contact27 October 2005
Orbital parameters
Reference system Geocentric orbit [2]
Regime Sun-synchronous orbit
Perigee altitude 682 km (424 mi)
Apogee altitude 708 km (440 mi)
Inclination 98.18°
Period 98.67 minutes
 

SSETI Express was the first spacecraft to be designed and built by European students and was launched by the European Space Agency. SSETI Express (Student Space Exploration & Technology Initiative) is a small spacecraft, similar in size and shape to a washing machine. On board the student-built spacecraft were three CubeSat picosatellites, extremely small satellites weighing around one kg each. [3] These were deployed one hour and forty minutes after launch. Twenty-one university groups, working from locations spread across Europe and with very different cultural backgrounds, worked together via the internet to jointly create the satellite. The expected lifetime of the mission was planned to be 2 months. SSETI Express encountered an unusually fast mission development: less than 18 months from kick-off in January 2004 to flight-readiness. [4]

Contents

Picosatellites

The three picosatellites on board the spacecraft were:

Its primary mission is the demonstration of newly developed solar cells in space. Other mission objectives include the acquisition of Earth images by a commercial off-the-shelf digital camera and the operation of a message transmission service using an amateur radio frequency.

The main objective of UWE-1, is to conduct telecommunication experiments related to the optimisation of an internet-related infrastructure for space applications.

This contains an automated identification system (AIS) used to receive GPS signals. The AIS signals from Ncube-2 are detected and forwarded to Ncube ground stations, allowing them to track the satellite.

Purpose

The purpose of Express is to take pictures of the Earth, act as a test-bed and technology demonstrator for ESEO (European Student Earth Orbiter) hardware for a launch in 2007, and also function as a radio transponder for the global amateur radio community. It is a pilot project for the SSETI student community and a demonstration of how ESA experts can support student initiatives. As well as this, it is meant to be an inspiration for other educational satellite programmes, but also a logistical precursor to the future SSETI microsatellite projects.

Launch

[3] [5] :7

Ground stations

The ground stations that manage the satellite when it is in orbit are as follows;

The main mission ground station consists of tracking antennas, an Ultra high frequency (UHF) radio, an S-Band to Very high frequency (VHF) down-converter, a VHF radio, a Terminal Node Controller (TNC) and a controlling computer. It is the primary command station for controlling the spacecraft.

The secondary ground station provides a redundant UHF support for telecommand uplink and mission telemetry downlink.

The Mission Control Computer (MCC) is the interface between the operations team and the two ground stations. It is capable of controlling the uplink of detailed flight plans to the spacecraft and has a database in which all downlinked telemetry is stored. The MCC can be remote controlled.

The Operations team is responsible for defining the flight plans and commanding the spacecraft via the MCC and ground stations.

The Telemetry Interface Database (TIDB) is a web-based application facilitating the dissemination of all mission telemetry from the MCC to SSETI Express teams, radio amateurs and the general public.

Specifications

SSETI Express Components SSETI Constrution.jpg
SSETI Express Components

Subsystems

The Attitude Determination and Control System has two parts. The Attitude Control System uses semi-active magnetic stabilisation. A pair of magnetorquers provide detumbling functionality and actively damp any subsequent vibrations, while a passive permanent magnet ensures alignment of the spacecraft's z-axis with the Earth's magnetic field.

The on-board camera (CAM) is based on a colour complementary metal oxide semiconductor (CMOS) sensor and an instrument control unit.

The Electrical Power System (EPS) is based on the concept of power generation by body-mounted photo-voltaic cells. The energy is stored in a rechargeable lithium-ion battery to ensure power is available during eclipse phases or during periods of low sunlight.

The Propulsion Instrument Control unit is affectionately referred to as the "Magic" box. This sub-system processes commands related to the propulsion system, controls the thruster valves and performs data acquisition from the various thermistors and pressure transducers.

The Mission Analysis (MIAS) subsystem doesn't produce any hardware, but data: it is in charge of the design of the space mission, as well as all the computations related to it, i.e., trajectories, eclipses, communication windows, etc. The MIAS team also assumed Flight Dynamics after the launch, which mainly confronted the current trajectory of the satellite with the expected one, and suggested corrections, in case these two differed too much.

The On-Board Computer (OBC) controls the spacecraft during nominal and payload operations and collects all telemetry and payload data for subsequent transfer to the ground.

The propulsion (PROP) payload is an attitude control cold-gas system with four low-pressure thrusters, fed by a pressure regulation system.

The S band patch antennas (S-Band ANT) are adapted from the ESEO microsatellite. A set of three directional patch antennas are used, outputting a total of 3 watts of circularly polarised radiation at 2401.84 MHz.

Radio amateurs from the United Kingdom have developed the S-Band transmitter (S-Band TX). It serves a dual function providing both high-speed mission data downlink at 38400 bit/s and also, in combination with the UHF system, a single-channel audio transponder.

The primary load-bearing spacecraft structure (STRU) consists of aluminium honeycomb panels configured in a similar way to the game known as tic-tac-toe or noughts and crosses. The secondary structure consists of 1 mm aluminium outer lateral panels, serving as mounting surfaces for the solar cells, Sun sensors and other lightweight equipment.

The CubeSat deployment is from a T-POD (Tokyo-Picosatellite Orbital Deployer) system, developed jointly by ISSL (Intelligent Space Systems Laboratory) of the University of Tokyo and by UTIAS-SFL (University of Toronto, Institute for Aerospace Studies-Space Flight Laboratory), Toronto, Canada. The T-POD was used to store three passengers CubeSat during the launch and to deploy them from SSETI Express once orbit was achieved.

The Ultra high frequency (UHF) unit contains a radio and a terminal node controller (TNC) and is the spacecraft's primary communications system.

SSETI Express partners

End of mission

On 28 October 2005, the ground control station in Aalborg had not had any contact with SSETI Express. Thorough analysis indicated that a failure in the electrical power system on board the spacecraft is preventing the batteries from charging, resulting in a shutdown of the satellite. [6] The launch itself was successful but, unfortunately, the mission only lasted 12.5 hours as the solar array was unable to charge the batteries, due to a malfunction in the Electrical Power Subsystem. Nevertheless, in many respects SSETI Express was a great success and many valuable lessons were learned. Of the 19 subsystems, 12 operated successfully, 5 could not be tested because the mission ended prematurely, and only 2 failed (one of them with no consequence as there was a backup). The media impact was enormous, with an estimated 100 million TV viewers. [7]

See also

Related Research Articles

<span class="mw-page-title-main">European Space Operations Centre</span> Main mission control centre for the European Space Agency

The European Space Operations Centre (ESOC) serves as the main mission control centre for the European Space Agency (ESA) and is located in Darmstadt, Germany. ESOC's primary function is the operation of uncrewed spacecraft on behalf of ESA and the launch and early orbit phases (LEOP) of ESA and third-party missions. The Centre is also responsible for a range of operations-related activities within ESA and in cooperation with ESA's industry and international partners, including ground systems engineering, software development, flight dynamics and navigation, development of mission control tools and techniques and space debris studies.

<i>Mars Express</i> European Mars orbiter

Mars Express is a space exploration mission being conducted by the European Space Agency (ESA). The Mars Express mission is exploring the planet Mars, and is the first planetary mission attempted by the agency. "Express" originally referred to the speed and efficiency with which the spacecraft was designed and built. However, "Express" also describes the spacecraft's relatively short interplanetary voyage, a result of being launched when the orbits of Earth and Mars brought them closer than they had been in about 60,000 years.

<span class="mw-page-title-main">Mercury-Scout 1</span>

Mercury-Scout 1, or MS-1, was a United States spacecraft intended to test tracking stations for Project Mercury flights. It grew out of a May 5, 1961 NASA proposal to use Scout rockets to launch small satellites to evaluate the worldwide Mercury Tracking Network in preparation for crewed orbital missions. The launch of Mercury-Scout 1 on November 1, 1961, was unsuccessful, and the satellite failed to reach orbit.

<span class="mw-page-title-main">Mission control center</span> Facility that manages aerospace vehicle flights

A mission control center is a facility that manages space flights, usually from the point of launch until landing or the end of the mission. It is part of the ground segment of spacecraft operations. A staff of flight controllers and other support personnel monitor all aspects of the mission using telemetry, and send commands to the vehicle using ground stations. Personnel supporting the mission from an MCC can include representatives of the attitude control system, power, propulsion, thermal, attitude dynamics, orbital operations and other subsystem disciplines. The training for these missions usually falls under the responsibility of the flight controllers, typically including extensive rehearsals in the MCC.

HAMSAT also known as HAMSAT INDIA, VU2SAT and VO-52 is a microsatellite weighing 42.5 kilograms (93.7 lb), providing amateur radio satellite communications services for Indian and international amateur radio operators. This satellite carries the in-orbit designation of VO-52, and is an OSCAR series satellite.

Spacecraft design is a process where systems engineering principles are systemically applied in order to construct complex vehicles for missions involving travel, operation or exploration in outer space. This design process produces the detailed design specifications, schematics, and plans for the spacecraft system, including comprehensive documentation outlining the spacecraft's architecture, subsystems, components, interfaces, and operational requirements, and potentially some prototype models or simulations, all of which taken together serve as the blueprint for manufacturing, assembly, integration, and testing of the spacecraft to ensure that it meets mission objectives and performance criteria.

<span class="mw-page-title-main">Flight controller</span> Person who aids in spaceflight activities

Flight controllers are personnel who aid space flight by working in such Mission Control Centers as NASA's Mission Control Center or ESA's European Space Operations Centre. Flight controllers work at computer consoles and use telemetry to monitor various technical aspects of a space mission in real-time. Each controller is an expert in a specific area and constantly communicates with additional experts in the "back room". The flight director, who leads the flight controllers, monitors the activities of a team of flight controllers, and has overall responsibility for success and safety.

The Canadian Advanced Nanospace eXperiment (CanX) program is a Canadian CubeSat nanosatellite program operated by the University of Toronto Institute for Aerospace Studies, Space Flight Laboratory (UTIAS/SFL). The program's objectives are to involve graduate students in the process of spaceflight development, and to provide low-cost access to space for scientific research and the testing of nanoscale devices. The CanX projects include CanX-1, CanX-2, the BRIght Target Explorer (BRITE), and CanX-4&5.

<span class="mw-page-title-main">AAUSat-2</span> CubeSat built and operated by Aalborg University, Denmark

AAUSAT-II, is the second student-built CubeSat built and operated by students from Aalborg University in Denmark. It was launched 28 April 2008 05:53:51 UTC from Satish Dhawan Space Centre in India on a Polar Satellite Launch Vehicle (PSLV) launch vehicle. AAUSAT-II carries a gamma radiation sensor.

<span class="mw-page-title-main">FASTRAC</span>

Formation Autonomy Spacecraft with Thrust, Relnav, Attitude and Crosslink is a pair of nanosatellites developed and built by students at The University of Texas at Austin. The project is part of a program sponsored by the Air Force Research Laboratory (AFRL), whose goal is to lead the development of affordable space technology. The FASTRAC mission will specifically investigate technologies that facilitate the operation of multiple satellites in formation. These enabling technologies include relative navigation, cross-link communications, attitude determination, and thrust. Due to the high cost of lifting mass into orbit, there is a strong initiative to miniaturize the overall weight of spacecraft. The utilization of formations of satellites, in place of large single satellites, reduces the risk of single point failure and allows for the use of low-cost hardware.

The European Student Moon Orbiter (ESMO) was a proposed European student mission to the Moon. Student teams from 19 universities throughout Europe worked on the program. ESMO was conceived by the Student Space Exploration & Technology Initiative (SSETI) under the support of the European Space Agency (ESA); prior to the start of Phase A the full responsibility for the management of the program was transferred to the ESA Education Office.

The Intelsat VI series of satellites were the 8th generation of geostationary communications satellites for the Intelsat Corporation. Designed and built by Hughes Aircraft Company (HAC) in 1983-1991, there were five VI-series satellites built: 601, 602, 603, 604, and 605.

<span class="mw-page-title-main">O/OREOS</span> NASA nanosatellite with 2 astrobiology experiments on board

The O/OREOS is a NASA automated CubeSat nanosatellite laboratory approximately the size of a loaf of bread that contains two separate astrobiology experiments on board. Developed by the Small Spacecraft Division at NASA Ames Research Center, the spacecraft was successfully launched as a secondary payload on STP-S26 led by the Space Test Program of the United States Air Force on a Minotaur IV launch vehicle from Kodiak Island, Alaska on 20 November 2010, at 01:25:00 UTC.

ITUpSAT1, short for Istanbul Technical University picoSatellite-1, is a single CubeSat built by the Faculty of Aeronautics and Astronautics at the Istanbul Technical University. It was launched on 23 September 2009 atop a PSLV-C14 satellite launch vehicle from Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh in India, and became the first Turkish university satellite to orbit the Earth. It was expected to have a minimum of six-month life term, but it is still functioning for over two years. It is a picosatellite with side lengths of 10 centimetres (3.9 in) and a mass of 0.990 kilograms (2.18 lb).

The Global Educational Network for Satellite Operations (GENSO) is forming by a worldwide network of ground stations and spacecraft which can interact via a software standard. The GENSO aims to increase the return from educational space missions and changed the way that these missions are managed, dramatically increasing the level of access to orbital educational spacecraft.

<span class="mw-page-title-main">Electra (radio)</span> Spacecraft and rover telecommunications package

Electra, formally called the Electra Proximity Link Payload, is a telecommunications package that acts as a communications relay and navigation aid for Mars spacecraft and rovers. The use of such a relay increases the amount of data that can be returned by two to three orders of magnitude.

USA-54, also known as GPS II-7 and GPS SVN-20, was an American navigation satellite which formed part of the Global Positioning System. It was the seventh of nine Block II GPS satellites to be launched, which were the first operational GPS satellites to fly.

<span class="mw-page-title-main">AAUSat-3</span> CubeSat built and operated by Aalborg University, Denmark

AAUSat-3,, is the third CubeSat built and operated by students from the Aalborg University in Denmark. It was launched on 25 February 2013 from the Satish Dhawan Space Centre in India on a Polar Satellite Launch Vehicle (PSLV) launch vehicle (PSLV-C20). AAUSat-3 carries two Automatic Identification System receivers as the main payload.

<span class="mw-page-title-main">Ground segment</span> Ground-based elements of a spacecraft system

A ground segment consists of all the ground-based elements of a space system used by operators and support personnel, as opposed to the space segment and user segment. The ground segment enables management of a spacecraft, and distribution of payload data and telemetry among interested parties on the ground. The primary elements of a ground segment are:

The Damping and Vibrations Experiment (DAVE), also known as CP-7, is a technology demonstration nanosatellite developed by the PolySat laboratory at California Polytechnic State University, San Luis Obispo, in collaboration with Northrop Grumman. The spacecraft adheres to the 1U CubeSat standard and is currently in a 93° inclination orbit. DAVE will study the vibration of metal beams damped with tungsten particles in a micro-gravity environment. The test elements are driven by a piezoelectric actuator, and vibration data is collected via an accelerometer at the tip of each beam. DAVE was launched into a high-inclination orbit as a secondary payload on the final flight of the Delta II launch vehicle as part of the ELaNa-18 ride-share mission with NASA's ICESat-2 primary payload. The launch occurred out of Vandenberg Air Force Base, California on September 15 at 6:02 AM local time. DAVE was deployed alongside three other CubeSat spacecraft: University of Central Florida's SurfSat, and two ELFIN spacecraft from University of California, Los Angeles.

References

  1. McDowell, Jonathan (21 July 2021). "Launch Log". Jonathan's Space Report. Retrieved 27 October 2021.
  2. "SSETI Express". NASA. 21 October 2021. Retrieved 27 October 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  3. 1 2 "First Internet-built student satellite successfully launched". ESA. 27 October 2005. Retrieved 27 October 2021.
  4. "SSETI (Student Space Education and Technology Initiative)". ESA eoPortal Directory. 2021. Retrieved 27 October 2021.
  5. Viscor, Tor. "SSETI – Past, Present and Future" . Retrieved 27 October 2021.
  6. "SSETI Express: power problem". ESA. 31 October 2005. Retrieved 27 October 2021.
  7. "SSETI Express nominated for 'Space Oscar'". ESA. 6 April 2006. Retrieved 27 October 2021.