SURF1

Last updated
SURF1
Identifiers
Aliases SURF1 , CMT4K, surfeit 1, cytochrome c oxidase assembly factor, SURF1 cytochrome c oxidase assembly factor, MC4DN1, SHY1
External IDs OMIM: 185620 MGI: 98443 HomoloGene: 2387 GeneCards: SURF1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001280787
NM_003172

NM_001271724
NM_013677

RefSeq (protein)

NP_001267716
NP_003163

NP_001258653
NP_038705

Location (UCSC) Chr 9: 133.35 – 133.36 Mb Chr 2: 26.8 – 26.81 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Surfeit locus protein 1 (SURF1) is a protein that in humans is encoded by the SURF1 gene. [5] [6] The protein encoded by SURF1 is a component of the mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex (MITRAC complex), which is involved in the regulation of cytochrome c oxidase assembly. [7] [8] Defects in this gene are a cause of Leigh syndrome, a severe neurological disorder that is commonly associated with systemic cytochrome c oxidase (complex IV) deficiency, and Charcot-Marie-Tooth disease 4K (CMT4K). [9] [10]

Contents

Structure

SURF1 is located on the q arm of chromosome 9 in position 34.2 and has 9 exons. [9] The SURF1 gene produces a 33.3 kDa protein composed of 300 amino acids. [11] [12] The protein is a member of the SURF1 family, which includes the related yeast protein SHY1 and rickettsial protein RP733. The gene is located in the surfeit gene cluster, a group of very tightly linked genes that do not share sequence similarity, where it shares a bidirectional promoter with SURF2 on the opposite strand. [9] SURF1 is a multi-pass protein that contains two transmembrane regions, one 19 amino acids in length from positions 61-79 and the other 17 amino acids in length from positions 274–290. [7] [8]

Function

This gene encodes a protein localized to the inner mitochondrial membrane and thought to be involved in the biogenesis of the cytochrome c oxidase complex. [9] SURF1 is a multi-pass membrane protein component of the mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex (MITRAC complex). The MITRAC complex regulates cytochrome c oxidase assembly by acting as a central assembly intermediate, receiving subunits imported to the inner mitochondrial membrane and regulating COX1 mRNA translation. [7] [8] [13]

Clinical significance

Mutations in SURF1 have been associated with mitochondrial complex IV (cytochrome c oxidase) deficiency with clinical manifestations of Leigh syndrome and Charcot-Marie-Tooth disease 4K (CMT4K). [7] [8] [14]

Mitochondrial complex IV deficiency

Mitochondrial complex IV deficiency is a disorder of the mitochondrial respiratory chain with heterogeneous clinical manifestations, ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. Features include hypertrophic cardiomyopathy, hepatomegaly and liver dysfunction, hypotonia, muscle weakness, exercise intolerance, developmental delay, delayed motor development and mental retardation. Some affected individuals manifest a fatal hypertrophic cardiomyopathy resulting in neonatal death. A subset of patients manifest Leigh syndrome. In patients presenting with pathogenic mutations resulting in dysfunctioning SURF1, cytochrome c oxidase activity is likely to be diminished in one or more types of tissues. [15] [7] [8]

Leigh syndrome

Leigh syndrome is an early-onset progressive neurodegenerative disorder characterized by the presence of focal, bilateral lesions in one or more areas of the central nervous system including the brainstem, thalamus, basal ganglia, cerebellum and spinal cord. Clinical features depend on which areas of the central nervous system are involved and include subacute onset of psychomotor retardation, hypotonia, ataxia, weakness, vision loss, eye movement abnormalities, seizures, and dysphagia. There have been over 30 different mutations in SURF1 that have been associated with Leigh syndrome. These mutations, which comprise at least 10 missense or nonsense, 8 splice site, and 12 insertion or deletion mutations, are believed to be the result of dysfunctional SURF1 that results in Leigh syndrome and cytochrome c oxidase deficiency. The most common mutation is believed to be 312_321del 311_312insAT. [14] [7] [8]

Charcot-Marie-Tooth disease 4K (CMT4K)

Charcot-Marie-Tooth disease 4K (CMT4K) is an autosomal recessive, demyelinating form of Charcot-Marie-Tooth disease, a disorder of the peripheral nervous system, characterized by progressive weakness and atrophy, initially of the peroneal muscles and later of the distal muscles of the arms. Charcot-Marie-Tooth disease is classified in two main groups on the basis of electrophysiologic properties and histopathology: primary peripheral demyelinating neuropathies (designated CMT1 when they are dominantly inherited) and primary peripheral axonal neuropathies (CMT2). Demyelinating neuropathies are characterized by severely reduced nerve conduction velocities (less than 38 m/sec), segmental demyelination and remyelination with onion bulb formations on nerve biopsy, slowly progressive distal muscle atrophy and weakness, absent deep tendon reflexes, and hollow feet. By convention, autosomal recessive forms of demyelinating Charcot-Marie-Tooth disease are designated CMT4. CMT4K patients manifest upper and lower limbs involvement. Some affected individuals have nystagmus, polyneuropathy, putaminal and periaqueductal lesions, and late-onset cerebellar ataxia. This disease, when associated with mutations in SURF1, has been found to be linked to cytochrome c oxidase deficiency. Variants associated with this CMT4K have included a homozygous splice site mutation, c.107-2A>G, a missense mutation, c.574C>T, and a deletion, c.799_800del. [10] [7] [8]

Interactions

SURF1 has been shown to have 11 binary protein-protein interactions including 8 co-complex interactions. SURF1 interacts with COA3 as part of the mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex (MITRAC complex). PTGES3, SLC25A5, COX6C, COX14, COA1 have all also been found to interact with SURF1. [7] [8] [16]

Related Research Articles

<span class="mw-page-title-main">Leigh syndrome</span> Mitochondrial metabolism disease characterized by progressive loss of mental and movement abilities

Leigh syndrome is an inherited neurometabolic disorder that affects the central nervous system. It is named after Archibald Denis Leigh, a British neuropsychiatrist who first described the condition in 1951. Normal levels of thiamine, thiamine monophosphate, and thiamine diphosphate are commonly found, but there is a reduced or absent level of thiamine triphosphate. This is thought to be caused by a blockage in the enzyme thiamine-diphosphate kinase, and therefore treatment in some patients would be to take thiamine triphosphate daily. While the majority of patients typically exhibit symptoms between the ages of 3 and 12 months, instances of adult onset have also been documented.

<span class="mw-page-title-main">Cytochrome c oxidase subunit I</span> Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase I (COX1) also known as mitochondrially encoded cytochrome c oxidase I (MT-CO1) is a protein that is encoded by the MT-CO1 gene in eukaryotes. The gene is also called COX1, CO1, or COI. Cytochrome c oxidase I is the main subunit of the cytochrome c oxidase complex. In humans, mutations in MT-CO1 have been associated with Leber's hereditary optic neuropathy (LHON), acquired idiopathic sideroblastic anemia, Complex IV deficiency, colorectal cancer, sensorineural deafness, and recurrent myoglobinuria.

<span class="mw-page-title-main">Cytochrome c oxidase subunit 2</span> Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase II is a protein in eukaryotes that is encoded by the MT-CO2 gene. Cytochrome c oxidase subunit II, abbreviated COXII, COX2, COII, or MT-CO2, is the second subunit of cytochrome c oxidase. It is also one of the three mitochondrial DNA (mtDNA) encoded subunits of respiratory complex IV.

<span class="mw-page-title-main">Cytochrome c oxidase subunit III</span> Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase subunit III (COX3) is an enzyme that in humans is encoded by the MT-CO3 gene. It is one of main transmembrane subunits of cytochrome c oxidase. It is also one of the three mitochondrial DNA (mtDNA) encoded subunits of respiratory complex IV. Variants of it have been associated with isolated myopathy, severe encephalomyopathy, Leber hereditary optic neuropathy, mitochondrial complex IV deficiency, and recurrent myoglobinuria.

<span class="mw-page-title-main">NDUFS4</span> Protein-coding gene in the species Homo sapiens

NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial (NDUFS4) also known as NADH-ubiquinone oxidoreductase 18 kDa subunit is an enzyme that in humans is encoded by the NDUFS4 gene. This gene encodes a nuclear-encoded accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase. Complex I removes electrons from NADH and passes them to the electron acceptor ubiquinone. Mutations in this gene can cause mitochondrial complex I deficiencies such as Leigh syndrome.

<span class="mw-page-title-main">SCO2</span> Protein-coding gene in the species Homo sapiens

SCO2 cytochrome c oxidase assembly is a protein that in humans is encoded by the SCO2 gene. The encoded protein is one of the cytochrome c oxidase (COX)(Complex IV) assembly factors. Human COX is a multimeric protein complex that requires several assembly factors. Cytochrome c oxidase (COX) catalyzes the transfer of electrons from cytochrome c to molecular oxygen, which helps to maintain the proton gradient across the inner mitochondrial membrane that is necessary for aerobic ATP production. The encoded protein is a metallochaperone that is involved in the biogenesis of cytochrome c oxidase subunit II. Mutations in this gene are associated with fatal infantile encephalocardiomyopathy and myopia 6.

<span class="mw-page-title-main">SCO1</span> Protein-coding gene in the species Homo sapiens

Protein SCO1 homolog, mitochondrial, also known as SCO1, cytochrome c oxidase assembly protein, is a protein that in humans is encoded by the SCO1 gene. SCO1 localizes predominantly to blood vessels, whereas SCO2 is barely detectable, as well as to tissues with high levels of oxidative phosphorylation. The expression of SCO2 is also much higher than that of SCO1 in muscle tissue, while SCO1 is expressed at higher levels in liver tissue than SCO2. Mutations in both SCO1 and SCO2 are associated with distinct clinical phenotypes as well as tissue-specific cytochrome c oxidase deficiency.

<span class="mw-page-title-main">COX6B1</span> Protein-coding gene in the species Homo sapiens

Cytochrome c oxidase subunit 6B1 is an enzyme that in humans is encoded by the COX6B1 gene. Cytochrome c oxidase 6B1 is a subunit of the cytochrome c oxidase complex, also known as Complex IV, the last enzyme in the mitochondrial electron transport chain. Mutations of the COX6B1 gene are associated with severe infantile encephalomyopathy and mitochondrial complex IV deficiency (MT-C4D).

<span class="mw-page-title-main">COX10</span> Mammalian protein found in Homo sapiens

Protoheme IX farnesyltransferase, mitochondrial is an enzyme that in humans is encoded by the COX10 gene. Cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. This component is a heteromeric complex consisting of 3 catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear genes. The mitochondrially-encoded subunits function in electron transfer, and the nuclear-encoded subunits may function in the regulation and assembly of the complex. This nuclear gene, COX10, encodes heme A: farnesyltransferase, which is not a structural subunit but required for the expression of functional COX and functions in the maturation of the heme A prosthetic group of COX. A gene mutation, which results in the substitution of a lysine for an asparagine (N204K), is identified to be responsible for cytochrome c oxidase deficiency. In addition, this gene is disrupted in patients with CMT1A duplication and with HNPP deletion.

<span class="mw-page-title-main">COX15</span> Protein-coding gene in the species Homo sapiens

Cytochrome c oxidase assembly protein COX15 homolog (COX15), also known as heme A synthase, is a protein that in humans is encoded by the COX15 gene. This protein localizes to the inner mitochondrial membrane and involved in heme A biosynthesis. COX15 is also part of a three-component mono-oxygenase that catalyses the hydroxylation of the methyl group at position eight of the protoheme molecule. Mutations in this gene has been reported in patients with hypertrophic cardiomyopathy as well as Leigh syndrome, and characterized by delayed onset of symptoms, hypotonia, feeding difficulties, failure to thrive, motor regression, and brain stem signs.

Mitochondrially encoded tRNA aspartic acid also known as MT-TD is a transfer RNA which in humans is encoded by the mitochondrial MT-TD gene.

Mitochondrially encoded tRNA glutamic acid also known as MT-TE is a transfer RNA which in humans is encoded by the mitochondrial MT-TE gene. MT-TE is a small 69 nucleotide RNA that transfers the amino acid glutamic acid to a growing polypeptide chain at the ribosome site of protein synthesis during translation.

Mitochondrially encoded tRNA phenylalanine also known as MT-TF is a transfer RNA which in humans is encoded by the mitochondrial MT-TF gene.

Mitochondrially encoded tRNA lysine also known as MT-TK is a transfer RNA which in humans is encoded by the mitochondrial MT-TK gene.

Mitochondrially encoded tRNA leucine 2 (CUN) also known as MT-TL2 is a transfer RNA which in humans is encoded by the mitochondrial MT-TL2 gene.

<span class="mw-page-title-main">NDUFA4</span> Protein-coding gene in the species Homo sapiens

NDUFA4, mitochondrial complex associated is a protein that in humans is encoded by the NDUFA4 gene. The NDUFA4 protein was first described to be a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. However, recent research has described NDUFA4 as a subunit of cytochrome c oxidase. Mutations in the NDUFA4 gene are associated with Leigh's syndrome.

<span class="mw-page-title-main">COA3</span> Protein-coding gene in the species Homo sapiens

Cytochrome c oxidase assembly factor 3, also known as Coiled-coil domain-containing protein 56, or Mitochondrial translation regulation assembly intermediate of cytochrome c oxidase protein of 12 kDa is a protein that in humans is encoded by the COA3 gene. This gene encodes a member of the cytochrome c oxidase assembly factor family. Studies of a related gene in fly suggest that the encoded protein is localized to mitochondria and is essential for cytochrome c oxidase function.

<span class="mw-page-title-main">COX14</span> Protein-coding gene in humans

Cytochrome c oxidase assembly factor COX14 is a protein that in humans is encoded by the COX14 gene. This gene encodes a small single-pass transmembrane protein that localizes to mitochondria. This protein may play a role in coordinating the early steps of cytochrome c oxidase subunit assembly and, in particular, the synthesis and assembly of the COX I subunit of the holoenzyme. Mutations in this gene have been associated with mitochondrial complex IV deficiency. Alternative splicing results in multiple transcript variants.

Cytochrome c oxidase assembly factor COX20 is a protein that in humans is encoded by the COX20 gene. This gene encodes a protein that plays a role in the assembly of cytochrome c oxidase, an important component of the respiratory pathway. Mutations in this gene can cause mitochondrial complex IV deficiency. There are multiple pseudogenes for this gene. Alternative splicing results in multiple transcript variants.

<span class="mw-page-title-main">PET100</span> Protein-coding gene in the species Homo sapiens

PET100 homolog is a protein that in humans is encoded by the PET100 gene. Mitochondrial complex IV, or cytochrome c oxidase, is a large transmembrane protein complex that is part of the respiratory electron transport chain of mitochondria. The small protein encoded by the PET100 gene plays a role in the biogenesis of mitochondrial complex IV. This protein localizes to the inner mitochondrial membrane and is exposed to the intermembrane space. Mutations in this gene are associated with mitochondrial complex IV deficiency. This gene has a pseudogene on chromosome 3. Alternative splicing results in multiple transcript variants.

References

  1. 1 2 3 ENSG00000280627 GRCh38: Ensembl release 89: ENSG00000148290, ENSG00000280627 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000015790 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Yon J, Jones T, Garson K, Sheer D, Fried M (March 1993). "The organization and conservation of the human Surfeit gene cluster and its localization telomeric to the c-abl and can proto-oncogenes at chromosome band 9q34.1". Human Molecular Genetics. 2 (3): 237–40. doi:10.1093/hmg/2.3.237. PMID   8499913.
  6. Zhu Z, Yao J, Johns T, Fu K, De Bie I, Macmillan C, Cuthbert AP, Newbold RF, Wang J, Chevrette M, Brown GK, Brown RM, Shoubridge EA (December 1998). "SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome". Nature Genetics. 20 (4): 337–43. doi:10.1038/3804. PMID   9843204. S2CID   12584110.
  7. 1 2 3 4 5 6 7 8 "SURF1 - Surfeit locus protein 1 - Homo sapiens (Human) - SURF1 gene & protein". www.uniprot.org. Retrieved 2018-08-07. Creative Commons by small.svg  This article incorporates text available under the CC BY 4.0 license.
  8. 1 2 3 4 5 6 7 8 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC   5210571 . PMID   27899622.
  9. 1 2 3 4 "Entrez Gene: SURF1 surfeit 1".PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. 1 2 Echaniz-Laguna A, Ghezzi D, Chassagne M, Mayençon M, Padet S, Melchionda L, Rouvet I, Lannes B, Bozon D, Latour P, Zeviani M, Mousson de Camaret B (October 2013). "SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease". Neurology. 81 (17): 1523–30. doi:10.1212/WNL.0b013e3182a4a518. PMC   3888171 . PMID   24027061.
  11. Yao D. "Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information". amino.heartproteome.org. Retrieved 2018-08-07.
  12. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  13. Dennerlein S, Oeljeklaus S, Jans D, Hellwig C, Bareth B, Jakobs S, Deckers M, Warscheid B, Rehling P (September 2015). "MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly". Cell Reports. 12 (10): 1644–55. doi: 10.1016/j.celrep.2015.08.009 . hdl: 11858/00-001M-0000-0028-466E-C . PMID   26321642.
  14. 1 2 Péquignot MO, Dey R, Zeviani M, Tiranti V, Godinot C, Poyau A, Sue C, Di Mauro S, Abitbol M, Marsac C (May 2001). "Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency". Human Mutation. 17 (5): 374–81. doi:10.1002/humu.1112. PMID   11317352. S2CID   26557551.
  15. "Mitochondrial complex IV deficiency". www.uniprot.org. Retrieved 2018-08-07.
  16. IntAct. "IntAct Portal". www.ebi.ac.uk. Retrieved 2018-08-07.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.