Schaffer collateral

Last updated

Schaffer collaterals are axon collaterals given off by CA3 pyramidal cells in the hippocampus. These collaterals project to area CA1 of the hippocampus [1] and are an integral part of memory formation and the emotional network of the Papez circuit, and of the hippocampal trisynaptic loop. It is one of the most studied synapses in the world and named after the Hungarian anatomist-neurologist Károly Schaffer.

Contents

As a part of the hippocampal structures, Schaffer collaterals develop the limbic system, which plays a critical role in the aspects of learning and memory. The signals of information from the contralateral CA3 region leave via the Schaffer collateral pathways for the CA1 pyramidal neurons. Mature synapses contain fewer Schaffer collateral branches than those synapses that are not fully developed. [2] Many scientists try to use the Schaffer collateral synapse as a sample synapse, a typical excitatory glutamatergic synapse in the cortex that has very well been studied in order to try to identify the rules of both the patterns of stimulation in electrical rules and the chemical mechanisms by which synapses get persistently stronger and which synapses get persistently weaker as well and to develop medication and treatment to cure the chronic diseases, such as dementia and Alzheimer's disease. Moreover, they believe that studying the Schaffer collateral can provide a whole range of understanding how Schaffer collaterals allow us to intervene with drug-treatments and with electrical-stimulation so that the quality of human experience can be improved.

Development

"Schaffer collateral is the conductor of the orchestra, but not the actual instrument that plays the music" - Dr. Patrick K. Stanton .

The functional hippocampus stores long-term memories through synaptic plasticity in terms of storing information. The hippocampus in communication with the neocortex mediates memory degradation. Plastic changes occurring in the hippocampus are involved in directing the process of memory storage.

The Schaffer collateral is involved in activity-dependent plasticity and the information processes that always are processed through the hippocampus all the time. The Schaffer collateral clearly affects whether the target cells fire action potentials or not. However, at the same time, it is triggering the process that takes much longer whereby some synapses get stronger and some get weaker, and overall the patterns of synaptic strength of the network all evolve over time.

Moreover, Schaffer collateral axons develop excitatory synapses that are scattered over the dendritic arborization [3] of hippocampal CA1 pyramidal neurons. [4] In the early stage of long-term potentiation, Schaffer collaterals release glutamate that binds to AMPA receptors of CA1-dendrites. The process of developing a network of CA3-to-CA1 recurrent excitatory glutamatergic synapses alters the frequency of spontaneous action potentials in Schaffer collaterals. By adulthood, CA3 recurrent network activity is reduced, the frequency of spontaneous action potentials is decreased in Schaffer collaterals, and a single release locus synapse with one dendritic spine on a given CA1 pyramidal neuron can be developed by Schaffer collateral axons. [2]

Location

The Schaffer collateral is located between the CA3 region and CA1 region in the hippocampus. Schaffer collaterals are the axons of pyramidal cells that connect two neurons (CA3 and CA1) and transfer information from CA3 to CA1. [5] [6] The entorhinal cortex sends the main input to the dentate gyrus (perforant pathway). From the granule cells of the dentate gyrus, connections are made to the CA3 regions of the hippocampus via mossy fibers. CA3 sends the information signals to CA1 pyramidal cells via the Schaffer collateral and commissural fibers from the contralateral hippocampus as well.

Function

Throughout the memory process in the hippocampus, Schaffer collaterals seem not to play a major role in the formation of actual memory, but it is clear that Schaffer collaterals assist the activity-dependent plasticity and the information processes that are always altered over the course of memory development in the hippocampus. Schaffer collaterals alter the development of the limbic system that is critical for learning and memory. The contralateral CA3 region sends information through Schaffer collateral to the CA1 pyramidal neurons.

Schaffer collateral and hippocampal synaptic plasticity

Plastic changes occurring in the hippocampus are involved in directing the process by which memories get stored. Schaffer collaterals affect the hippocampus to develop short (Short-term Plasticity) and long term synaptic plasticity (Long-term Plasticity) in terms of storing information and changing in the efficiency of synaptic transmission following previous synaptic activity.

Long-term Potentiation

Long-term potentiation (LTP) in the hippocampal formation is an example model for neural plasticity. [7] Schaffer collateral synapses have been used as a sample synapse, a typical excitatory glutamatergic synapse in the cortex that has very well been studied in order to try to identify the rules of both the patterns of stimulation in electrical rules and the chemical mechanisms by which synapses get persistently stronger and which synapses get persistently weaker as well. LTPs are involved in how people store information and how they retrieve information and involve networks of memories that are involved in facts and in emotions as well because the hippocampus is the part of the limbic system connected to the amygdala.

LTP in the hippocampus is an important model for neural plasticity that contributes to learning and memory. [7] Schaffer collaterals are the axons of the neurons in the CA3 regions of the hippocampus that form synapses in the CA1 regions.

The hippocampus is a part of the feedback process that sends signals to stop cortisol production. Thus, a damaged hippocampus can cause memory loss and inability of cognitive function. Furthermore, as the hippocampus is the region controlling learning and memory processes, the research on Schaffer collaterals may help to find treatments for diseases related to the hippocampus or its neural processing pathways such as Alzheimer's disease, a neurodegenerative disorder.

Long-term potentiation (LTP) of synaptic strength at Schaffer collateral synapses has largely been attributed to changes in the number and biophysical properties of AMPA receptors (AMPARs). [8] Neuropsin has a regulatory effect on Schaffer collateral LTP in the rat hippocampus. [7]

The functional hippocampus needs to store long-term memories. Once the memories are stored, they remain stored for a long time. Long-term changes in synaptic efficacy in the hippocampus can be induced by different patterns of stimulation generating presynaptic and postsynaptic depolarization [9] The theta burst stimulation of Schaffer collaterals can be sufficient to induce LTP by promoting the formation of filamentous actin in CA1 dendrites. [10] Within the mammalian brain, some patterns of synaptic activity produce long-term potentiation (LTP) which is a long-lasting increase in synaptic strength and long-term depression (LTD) which is a long-lasting decrease in synaptic strength.

LTP at Schaffer collateral-CA1 synapses and "SK2 channel plasticity"

Long-term plasticity in synapses of the hippocampus can be induced by different patterns of stimulation generating pre- and post-synaptic depolarization. These synaptic changes can clearly lead to modification in circuit function and to behavioral plasticity. Some patterns of synaptic activity produce an extensive increase in synaptic strength, also known as Long-Term Potentiation (LTP). In the hippocampus, LTP at Schaffer collateral-CA1 modulates the biophysical properties of AMPA receptors. Moreover, SK2, small-conductance Ca2+-activated K+ channel, changes the shape of excitatory postsynaptic potentials (EPSPs) by coupling with N-methyl D-aspartate receptors (NMDA receptors). The research by Lin MT, et al. was designed to investigate whether SK2 channels participate in synaptic changes when an activity-dependent decrease contributes to LTP. [8]

SK2 channels are ion channels that are activated by an increasing in the concentration of intracellular calcium and as a result of allowing K+ cation to cross the cell membrane. The double immunogold labeling identified that SK2 channels and NMDA cohabit within the postsynaptic density (PSD) of CA1 regions of the hippocampus. The authors used theta-burst pairing (TBP) to produce a rapid potentiation of synaptic strength and to evoke LTP that is induced simultaneously but whose expression levels vary inversely over time, and the result of the TBP induction was compared to the control group. The result showed that the TBP induction of LTP significantly increased EPSPs level. When the stimulus strength was reduced below the action potential threshold, apamin, a neurotoxin, was added to assess the contribution of SK2 activity to EPSPs. It resulted in an increase in the level of EPSPs with blockage of SK2 channels. The TBP induction of LTP abolishes SK2 channel contribution to EPSPs. When the induction of chemical LTP was applied, immunoparticles for SK2 were not found within the PSD of asymmetrical synapses. However, the SK2 immunoparticles were observed within intracellular membranes. The activation of protein kinase A (PKA) downregulates the surface expression of SK2 because PKA regulates the surface expression of AMPA receptors, a non-NMDA-type ionotropic transmembrane receptor, in the hippocampus. Therefore, PKA decreases the activity of LTP-dependent of SK2 channels. See Schaffer collateral#Long-term plasticity.

Short-term plasticity

Short-term synaptic plasticity undergoes important age-dependent changes that have crucial implications during the development of the nervous system. [2]

Vesicular release at "Schaffer Collateral"

Transmitters are released from pre-synaptic terminals through fusion of vesicles to the membrane, that are filled with neurotransmitters such as glutamate. Vesicles are exocytosed, with neurotransmitters reentering the presynaptic terminal for reuse. These fused vesicles then reenter preferentially back into the rapidly recycling pool for reuse. Additional vesicles within the reserve pool of the presynaptic terminal are released according to stronger amplitude depolarizations of the presynaptic axon due to greater spatial or temporal summation of action potentials, corresponding to greater calcium influx polarizing. Rate of endocytosis is dependent on rate at which vesicles are recycled into the recycling pool. [11]

Multivesicular release (MVR) occurs at Schaffer collateral-CA1 synapses when P is elevated by facilitation and that MVR may be a phenomenon common to many synapses throughout the central nervous system. [12]

Related Research Articles

<span class="mw-page-title-main">Chemical synapse</span> Biological junctions through which neurons signals can be sent

Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body.

<span class="mw-page-title-main">Long-term potentiation</span> Persistent strengthening of synapses based on recent patterns of activity

In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength.

In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory.

<span class="mw-page-title-main">Excitatory postsynaptic potential</span> Process causing temporary increase in postsynaptic potential

In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of postsynaptic membrane potential, caused by the flow of positively charged ions into the postsynaptic cell, is a result of opening ligand-gated ion channels. These are the opposite of inhibitory postsynaptic potentials (IPSPs), which usually result from the flow of negative ions into the cell or positive ions out of the cell. EPSPs can also result from a decrease in outgoing positive charges, while IPSPs are sometimes caused by an increase in positive charge outflow. The flow of ions that causes an EPSP is an excitatory postsynaptic current (EPSC).

In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress.

In neuroscience, a silent synapse is an excitatory glutamatergic synapse whose postsynaptic membrane contains NMDA-type glutamate receptors but no AMPA-type glutamate receptors. These synapses are named "silent" because normal AMPA receptor-mediated signaling is not present, rendering the synapse inactive under typical conditions. Silent synapses are typically considered to be immature glutamatergic synapses. As the brain matures, the relative number of silent synapses decreases. However, recent research on hippocampal silent synapses shows that while they may indeed be a developmental landmark in the formation of a synapse, that synapses can be "silenced" by activity, even once they have acquired AMPA receptors. Thus, silence may be a state that synapses can visit many times during their lifetimes.

Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials. The STDP process partially explains the activity-dependent development of nervous systems, especially with regard to long-term potentiation and long-term depression.

An apical dendrite is a dendrite that emerges from the apex of a pyramidal cell. Apical dendrites are one of two primary categories of dendrites, and they distinguish the pyramidal cells from spiny stellate cells in the cortices. Pyramidal cells are found in the prefrontal cortex, the hippocampus, the entorhinal cortex, the olfactory cortex, and other areas. Dendrite arbors formed by apical dendrites are the means by which synaptic inputs into a cell are integrated. The apical dendrites in these regions contribute significantly to memory, learning, and sensory associations by modulating the excitatory and inhibitory signals received by the pyramidal cells.

Depolarization-induced suppression of inhibition is the classical and original electrophysiological example of endocannabinoid function in the central nervous system. Prior to the demonstration that depolarization-induced suppression of inhibition was dependent on the cannabinoid CB1 receptor function, there was no way of producing an in vitro endocannabinoid mediated effect.

Metaplasticity is a term originally coined by W.C. Abraham and M.F. Bear to refer to the plasticity of synaptic plasticity. Until that time synaptic plasticity had referred to the plastic nature of individual synapses. However this new form referred to the plasticity of the plasticity itself, thus the term meta-plasticity. The idea is that the synapse's previous history of activity determines its current plasticity. This may play a role in some of the underlying mechanisms thought to be important in memory and learning such as long-term potentiation (LTP), long-term depression (LTD) and so forth. These mechanisms depend on current synaptic "state", as set by ongoing extrinsic influences such as the level of synaptic inhibition, the activity of modulatory afferents such as catecholamines, and the pool of hormones affecting the synapses under study. Recently, it has become clear that the prior history of synaptic activity is an additional variable that influences the synaptic state, and thereby the degree, of LTP or LTD produced by a given experimental protocol. In a sense, then, synaptic plasticity is governed by an activity-dependent plasticity of the synaptic state; such plasticity of synaptic plasticity has been termed metaplasticity. There is little known about metaplasticity, and there is much research currently underway on the subject, despite its difficulty of study, because of its theoretical importance in brain and cognitive science. Most research of this type is done via cultured hippocampus cells or hippocampal slices.

<span class="mw-page-title-main">Synapse</span> Structure connecting neurons in the nervous system

In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another neuron or to the target effector cell.

<span class="mw-page-title-main">Mossy fiber (hippocampus)</span> Pathway in the hippocampus

In the hippocampus, the mossy fiber pathway consists of unmyelinated axons projecting from granule cells in the dentate gyrus that terminate on modulatory hilar mossy cells and in Cornu Ammonis area 3 (CA3), a region involved in encoding short-term memory. These axons were first described as mossy fibers by Santiago Ramón y Cajal as they displayed varicosities along their lengths that gave them a mossy appearance. The axons that make up the pathway emerge from the basal portions of the granule cells and pass through the hilus of the dentate gyrus before entering the stratum lucidum of CA3. Granule cell synapses tend to be glutamatergic, though immunohistological data has indicated that some synapses contain neuropeptidergic elements including opiate peptides such as dynorphin and enkephalin. There is also evidence for co-localization of both GABAergic and glutamatergic neurotransmitters within mossy fiber terminals. GABAergic and glutamatergic co-localization in mossy fiber boutons has been observed primarily in the developing hippocampus, but in adulthood, evidence suggests that mossy fiber synapses may alternate which neurotransmitter is released through activity-dependent regulation.

<span class="mw-page-title-main">Synaptic potential</span> Potential difference across the postsynaptic membrane

Synaptic potential refers to the potential difference across the postsynaptic membrane that results from the action of neurotransmitters at a neuronal synapse. In other words, it is the “incoming” signal that a neuron receives. There are two forms of synaptic potential: excitatory and inhibitory. The type of potential produced depends on both the postsynaptic receptor, more specifically the changes in conductance of ion channels in the post synaptic membrane, and the nature of the released neurotransmitter. Excitatory post-synaptic potentials (EPSPs) depolarize the membrane and move the potential closer to the threshold for an action potential to be generated. Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the membrane and move the potential farther away from the threshold, decreasing the likelihood of an action potential occurring. The Excitatory Post Synaptic potential is most likely going to be carried out by the neurotransmitters glutamate and acetylcholine, while the Inhibitory post synaptic potential will most likely be carried out by the neurotransmitters gamma-aminobutyric acid (GABA) and glycine. In order to depolarize a neuron enough to cause an action potential, there must be enough EPSPs to both depolarize the postsynaptic membrane from its resting membrane potential to its threshold and counterbalance the concurrent IPSPs that hyperpolarize the membrane. As an example, consider a neuron with a resting membrane potential of -70 mV (millivolts) and a threshold of -50 mV. It will need to be raised 20 mV in order to pass the threshold and fire an action potential. The neuron will account for all the many incoming excitatory and inhibitory signals via summative neural integration, and if the result is an increase of 20 mV or more, an action potential will occur.

Coincidence detection is a neuronal process in which a neural circuit encodes information by detecting the occurrence of temporally close but spatially distributed input signals. Coincidence detectors influence neuronal information processing by reducing temporal jitter and spontaneous activity, allowing the creation of variable associations between separate neural events in memory. The study of coincidence detectors has been crucial in neuroscience with regards to understanding the formation of computational maps in the brain.

<span class="mw-page-title-main">Dendritic spike</span> Action potential generated in the dendrite of a neuron

In neurophysiology, a dendritic spike refers to an action potential generated in the dendrite of a neuron. Dendrites are branched extensions of a neuron. They receive electrical signals emitted from projecting neurons and transfer these signals to the cell body, or soma. Dendritic signaling has traditionally been viewed as a passive mode of electrical signaling. Unlike its axon counterpart which can generate signals through action potentials, dendrites were believed to only have the ability to propagate electrical signals by physical means: changes in conductance, length, cross sectional area, etc. However, the existence of dendritic spikes was proposed and demonstrated by W. Alden Spencer, Eric Kandel, Rodolfo Llinás and coworkers in the 1960s and a large body of evidence now makes it clear that dendrites are active neuronal structures. Dendrites contain voltage-gated ion channels giving them the ability to generate action potentials. Dendritic spikes have been recorded in numerous types of neurons in the brain and are thought to have great implications in neuronal communication, memory, and learning. They are one of the major factors in long-term potentiation.

<span class="mw-page-title-main">Nonsynaptic plasticity</span> Form of neuroplasticity

Nonsynaptic plasticity is a form of neuroplasticity that involves modification of ion channel function in the axon, dendrites, and cell body that results in specific changes in the integration of excitatory postsynaptic potentials and inhibitory postsynaptic potentials. Nonsynaptic plasticity is a modification of the intrinsic excitability of the neuron. It interacts with synaptic plasticity, but it is considered a separate entity from synaptic plasticity. Intrinsic modification of the electrical properties of neurons plays a role in many aspects of plasticity from homeostatic plasticity to learning and memory itself. Nonsynaptic plasticity affects synaptic integration, subthreshold propagation, spike generation, and other fundamental mechanisms of neurons at the cellular level. These individual neuronal alterations can result in changes in higher brain function, especially learning and memory. However, as an emerging field in neuroscience, much of the knowledge about nonsynaptic plasticity is uncertain and still requires further investigation to better define its role in brain function and behavior.

In neuroscience, synaptic scaling is a form of homeostatic plasticity, in which the brain responds to chronically elevated activity in a neural circuit with negative feedback, allowing individual neurons to reduce their overall action potential firing rate. Where Hebbian plasticity mechanisms modify neural synaptic connections selectively, synaptic scaling normalizes all neural synaptic connections by decreasing the strength of each synapse by the same factor, so that the relative synaptic weighting of each synapse is preserved.

<span class="mw-page-title-main">Rapastinel</span> Chemical compound

Rapastinel (INN) is a novel antidepressant that was under development by Allergan as an adjunctive therapy for the treatment of treatment-resistant depression. It is a centrally active, intravenously administered amidated tetrapeptide that acts as a novel and selective modulator of the NMDA receptor. The drug is a rapid-acting and long-lasting antidepressant as well as robust cognitive enhancer by virtue of its ability to enhance NMDA receptor-mediated signal transduction and synaptic plasticity.

<span class="mw-page-title-main">Hippocampus proper</span> Part of the brain of mammals

The hippocampus proper refers to the actual structure of the hippocampus which is made up of three regions or subfields. The subfields CA1, CA2, and CA3 use the initials of cornu Ammonis, an earlier name of the hippocampus.

Early long-term potentiation (E-LTP) is the first phase of long-term potentiation (LTP), a well-studied form of synaptic plasticity, and consists of an increase in synaptic strength. LTP could be produced by repetitive stimulation of the presynaptic terminals, and it is believed to play a role in memory function in the hippocampus, amygdala and other cortical brain structures in mammals.

References

  1. Vago, David R.; Kesner, Raymond P. (June 2008). "Disruption of the direct perforant path input to the CA1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection". Behavioural Brain Research. 189 (2): 273–283. doi:10.1016/j.bbr.2008.01.002. PMC   2421012 . PMID   18313770.
  2. 1 2 3 Schiess, Adrian R. B.; Scullin, Chessa; Donald Partridge, L. (April 2010). "Maturation of Schaffer collateral synapses generates a phenotype of unreliable basal evoked release and very reliable facilitated release". European Journal of Neuroscience. 31 (8): 1377–1387. doi:10.1111/j.1460-9568.2010.07180.x. PMC   3575738 . PMID   20384768.
  3. "arborization". The Free Dictionary.
  4. Smith, M. A; Ellis-Davies, G. C R; Magee, J. C (21 February 2003). "Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons". The Journal of Physiology. 548 (1): 245–258. doi:10.1113/jphysiol.2002.036376. PMC   2342790 . PMID   12598591.
  5. Lebeau, Geneviève; DesGroseillers, Luc; Sossin, Wayne; Lacaille, Jean-Claude (2011). "mRNA binding protein staufen 1-dependent regulation of pyramidal cell spine morphology via NMDA receptor-mediated synaptic plasticity". Molecular Brain. 4 (1): 22. doi: 10.1186/1756-6606-4-22 . PMC   3118231 . PMID   21635779.
  6. Arrigoni, Elda; Greene, Robert W (May 2004). "Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell". British Journal of Pharmacology . 142 (2): 317–322. doi:10.1038/sj.bjp.0705744. PMC   1574942 . PMID   15155538.
  7. 1 2 3 Komai, Shoji; Matsuyama, Tomohiro; Matsumoto, Kazumasa; Kato, Keiko; Kobayashi, Masayuki; Imamura, Kazuyuki; Yoshida, Shigetaka; Ugawa, Shinya; Shiosaka, Sadao (April 2000). "Neuropsin regulates an early phase of Schaffer-collateral long-term potentiation in the murine hippocampus". European Journal of Neuroscience. 12 (4): 1479–1486. doi:10.1046/j.1460-9568.2000.00035.x. PMID   10762375. S2CID   44257092.
  8. 1 2 Lin, Mike T; Luján, Rafael; Watanabe, Masahiko; Adelman, John P; Maylie, James (20 January 2008). "SK2 channel plasticity contributes to LTP at Schaffer collateral–CA1 synapses". Nature Neuroscience. 11 (2): 170–177. doi:10.1038/nn2041. PMC   2613806 . PMID   18204442.
  9. Hoffman, D. A.; Sprengel, R.; Sakmann, B. (21 May 2002). "Molecular dissection of hippocampal theta-burst pairing potentiation". Proceedings of the National Academy of Sciences. 99 (11): 7740–7745. Bibcode:2002PNAS...99.7740H. doi: 10.1073/pnas.092157999 . PMC   124338 . PMID   12032353.
  10. Meighan, Peter C.; Meighan, Starla E.; Davis, Christopher J.; Wright, John W.; Harding, Joseph W. (September 2007). "Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/CA1 synapses". Journal of Neurochemistry. 102 (6): 2085–2096. doi:10.1111/j.1471-4159.2007.04682.x. PMID   17587312. S2CID   3753928.
  11. Stanton, Patric K.; Winterer, Jochen; Zhang, Xiao-lei; Müller, Wolfgang (November 2005). "Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices". European Journal of Neuroscience. 22 (10): 2451–2461. doi:10.1111/j.1460-9568.2005.04437.x. PMID   16307588. S2CID   9359440.
  12. Christie, J. M.; Jahr, CE (4 January 2006). "Multivesicular release at Schaffer collateral-CA1 hippocampal synapses". Journal of Neuroscience. 26 (1): 210–216. doi:10.1523/JNEUROSCI.4307-05.2006. PMC   2670931 . PMID   16399689.