Southwestern corn borer

Last updated

Southwestern corn borer
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Crambidae
Genus: Diatraea
Species:
D. grandiosella
Binomial name
Diatraea grandiosella
Dyar, 1911
Life stages, clockwise starting at top: adult moth, non-diapausing (spotted) last-instar larva, diapausing (immaculate) larva, pupa, eggs (laid on wax paper), first-instar larva (above date on coin) SWCB life stages.jpg
Life stages, clockwise starting at top: adult moth, non-diapausing (spotted) last-instar larva, diapausing (immaculate) larva, pupa, eggs (laid on wax paper), first-instar larva (above date on coin)
Larval stage 5361231 larval stage s.w. cornborer.jpg
Larval stage

The southwestern corn borer, Diatraea grandiosella, is a moth belonging to the sub-order Heterocera. Like most moths, The southwestern corn borer undergoes complete metamorphosis developing as an egg, larva (caterpillar), pupa and adult. It is capable of entering diapause in its larva stage [1] [2] and under the conditions of a precise photoperiod. [3] Growth and development are regulated by juvenile hormones. [4] The southwestern corn borer has an extensive range. It occurs in Mexico and in Alabama, Arizona, Arkansas, Colorado, Illinois, Indiana, Kansas, Kentucky, Louisiana, Mississippi, Missouri, Nebraska, New Mexico, Oklahoma, Tennessee, and Texas. [5]

Known host plants of D. grandiosella include sugarcane, forage and grain sorghums, broomcorn, and Johnsongrass, teosinte, and millet well as field corn, popcorn, and sweetcorn. [6] It remains a serious agricultural pest of corn (maize).

Pest control

Infestation is sometimes controlled by the use of pheromone traps that lure adult male moths. [7] The practice of carefully timed planting dates, use of early maturing varieties, and the destruction of crop residues are well-established methods for suppressing populations of borer on many crops. [8] Bacillus thuringiensis , a bacterium, is often applied as a pesticide. [9] Chemical pesticides continue to be used for infestation control. [10] Efforts have been underway to breed strains of corn (maize) that are resistant to the southwestern corn borer. The USDA has documented an increase in corn production when genetically engineered corn, resistant to corn borers, was grown in place of non-genetically engineered corn. [11] Under biological control practices, a variety of methods can be used against the borer at one time. This would include the introduction of predators or parasites. [12]

Nocturnal insectivores often feed on moths; these include some bats, some species of owls and other species of birds. Moths are also eaten by some species of lizards, cats, dogs, rodents, and some bears. Moth larvae are vulnerable to being parasitized by Ichneumonidae.

Related Research Articles

<i>Bacillus thuringiensis</i> Species of bacteria used as an insecticide

Bacillus thuringiensis is a gram-positive, soil-dwelling bacterium, the most commonly used biological pesticide worldwide. B. thuringiensis also occurs naturally in the gut of caterpillars of various types of moths and butterflies, as well on leaf surfaces, aquatic environments, animal feces, insect-rich environments, and flour mills and grain-storage facilities. It has also been observed to parasitize other moths such as Cadra calidella—in laboratory experiments working with C. calidella, many of the moths were diseased due to this parasite.

<span class="mw-page-title-main">Genetically modified maize</span> Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

<i>Helicoverpa zea</i> Species of moth

Helicoverpa zea, commonly known as the corn earworm, is a species in the family Noctuidae. The larva of the moth Helicoverpa zea is a major agricultural pest. Since it is polyphagous during the larval stage, the species has been given many different common names, including the cotton bollworm and the tomato fruitworm. It also consumes a wide variety of other crops.

<span class="mw-page-title-main">Crambidae</span> Family of moths

Crambidae comprises the grass moth family of lepidopterans. They are variable in appearance, with the nominal subfamily Crambinae taking up closely folded postures on grass stems where they are inconspicuous, while other subfamilies include brightly coloured and patterned insects that rest in wing-spread attitudes.

<span class="mw-page-title-main">Diapause</span> Response delay in animal dormancy

In animal dormancy, diapause is the delay in development in response to regular and recurring periods of adverse environmental conditions. It is a physiological state with very specific initiating and inhibiting conditions. The mechanism is a means of surviving predictable, unfavorable environmental conditions, such as temperature extremes, drought, or reduced food availability. Diapause is observed in all the life stages of arthropods, especially insects.

<span class="mw-page-title-main">Cabbage looper</span> Species of moth

The cabbage looper is a medium-sized moth in the family Noctuidae, a family commonly referred to as owlet moths. Its common name comes from its preferred host plants and distinctive crawling behavior. Cruciferous vegetables, such as cabbage, bok choy, and broccoli, are its main host plant; hence, the reference to cabbage in its common name. The larva is called a looper because it arches its back into a loop when it crawls.

<span class="mw-page-title-main">Diamondback moth</span> Species of moth

The diamondback moth, sometimes called the cabbage moth, is a moth species of the family Plutellidae and genus Plutella. The small, grayish-brown moth sometimes has a cream-colored band that forms a diamond along its back. The species may have originated in Europe, South Africa, or the Mediterranean region, but it has now spread worldwide.

<span class="mw-page-title-main">European corn borer</span> Species of moth

The European corn borer, also known as the European corn worm or European high-flyer, is a moth of the family Crambidae. It is a pest of grain, particularly maize. The insect is native to Europe, originally infesting varieties of millet, including broom corn. The European corn borer was first reported in North America in 1917 in Massachusetts, but was probably introduced from Europe several years earlier. Since its initial discovery in the Americas, the insect has spread into Canada and westwards across the United States to the Rocky Mountains.

<i>Agrotis ipsilon</i> Species of moth

Agrotis ipsilon, the dark sword-grass, black cutworm, greasy cutworm, floodplain cutworm or ipsilon dart, is a small noctuid moth found worldwide. The moth gets its scientific name from black markings on its forewings shaped like the letter "Y" or the Greek letter upsilon. The larvae are known as "cutworms" because they cut plants and other crops. The larvae are serious agricultural pests and feed on nearly all varieties of vegetables and many important grains.

<i>Spodoptera littoralis</i> Species of moth

Spodoptera littoralis, also referred to as the African cotton leafworm or Egyptian cotton leafworm or Mediterranean brocade, is a species of moth in the family Noctuidae. S. littoralis is found widely in Africa, Mediterranean Europe and Middle Eastern countries. It is a highly polyphagous organism that is a pest of many cultivated plants and crops. As a result, this species was assigned the label of A2 quarantine pest by the EPPO and was cautioned as a highly invasive species in the United States. The devastating impacts caused by these pests have led to the development of both biological and chemical control methods. This moth is often confused with Spodoptera litura.

<span class="mw-page-title-main">Delta endotoxin</span> Group of insecticidal toxins produced by the bacteria Bacillus thuringiensis

Delta endotoxins (δ-endotoxins) are pore-forming toxins produced by Bacillus thuringiensis species of bacteria. They are useful for their insecticidal action and are the primary toxin produced by Bt maize/corn. During spore formation the bacteria produce crystals of such proteins that are also known as parasporal bodies, next to the endospores; as a result some members are known as a parasporin. The Cyt (cytolytic) toxin group is a group of delta-endotoxins different from the Cry group.

<i>Helicoverpa punctigera</i> Species of moth

Helicoverpa punctigera, the native budworm, Australian bollworm or Chloridea marmada, is a species of moth in the family Noctuidae. This species is native to Australia. H. punctigera are capable of long-distance migration from their inland Australian habitat towards coastal regions and are an occasional migrant to New Zealand.

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

The MON 810 corn is a genetically modified maize used around the world. It is a Zea mays line known as YieldGard from the company Monsanto. This plant is a genetically modified organism (GMO) designed to combat crop loss due to insects. There is an inserted gene in the DNA of MON 810 which allows the plant to make a protein that harms insects that try to eat it. The inserted gene is from the Bacillus thuringiensis which produces the Bt protein that is poisonous to insects in the order Lepidoptera, including the European corn borer.

<i>Tuta absoluta</i> Pest worm of tomato, potato, and others

Tuta absoluta or Phthorimaea absoluta is a species of moth in family Gelechiidae known by the common names South American tomato pinworm, tomato leafminer, tomato pinworm and South American tomato moth. It is well known as a serious pest of tomato crops in Europe, Africa, western Asia and South and Central America, with larvae causing up to 100% loss if not effectively controlled.

<i>Maliarpha separatella</i> Species of moth

Maliarpha separatella, the African white stemborer, is a species of moth of the family Pyralidae. A worldwide paddy pest, it is found throughout African countries of Cameroon, Mali, Réunion, Madagascar, South Africa, and many Asian paddy cultivating countries such as Myanmar, India, and Sri Lanka. Though they are reported from China and Papua New Guinea, they are also known to attack sugarcane.

<i>Eldana</i> Genus of moths

Eldana is a genus of moths of the family Pyralidae containing only one species, the African sugar-cane borer, which is commonly found in Equatorial Guinea, Ghana, Mozambique, Sierra Leone and South Africa. Adults have pale brown forewings with two small spots in the centre and light brown hindwings, and they have a wingspan of 35mm. This species is particularly relevant to humans because the larvae are a pest of the Saccharum species as well as several grain crops such as sorghum and maize. Other recorded host plants are cassava, rice and Cyperus species. When attacking these crops, E. saccharina bores into the stems of their host plant, causing severe damage to the crop. This behavior is the origin of the E. saccharrina's common name, the African sugar-cane borer. The African sugar-cane borer is a resilient pest, as it can survive crop burnings. Other methods such as intercropping and parasitic wasps have been employed to prevent further damage to crops.

<i>Cadra calidella</i> Species of moth

Cadra calidella, the dried fruit or date moth, is a species of snout moth in the genus Cadra and commonly mistaken for the species Cadra figulilella. It thrives in warmer conditions and is found primarily in Mediterranean countries, although it can also be found in Central Asia, Kazakhstan, Transcaucasia, Caucasus, and the western part of Russia. It feeds on dried fruits, carobs, nuts and seeds, hence earning its colloquial name. This diet damages the food industry, and it is a common storage pest. Because of this, much research has been done to study ways to limit its reproduction rate and population size. It was first described by Achille Guenée in 1845.

Ostrinia scapulalis, the adzuki bean borer or adzuki bean worm, is a species of moth in the family Crambidae. It was described by Francis Walker in 1859. It is one of 20 moths in the genus Ostrinia and is of Eurasian origin. The larvae have a gray mid-dorsal line and can be light pink or beige. The adult adzuki bean borer has a yellowish-brown forewing with jagged lines and variable darker shading, with a wingspan that ranges from 20 to 32 mm. The moths of this species are nocturnal and tend to be attracted to light.

<i>Ostrinia furnacalis</i> Species of moth

Ostrinia furnacalis is a species of moth in the family Crambidae, the grass moths. It was described by Achille Guenée in 1854 and is known by the common name Asian corn borer since this species is found in Asia and feeds mainly on corn crop. The moth is found from China to Australia, including in Java, Sulawesi, the Philippines, Borneo, New Guinea, the Solomon Islands, and Micronesia. The Asian corn borer is part of the species complex, Ostrinia, in which members are difficult to distinguish based on appearance. Other Ostrinia such as O. orientalis, O. scapulalis, O. zealis, and O. zaguliaevi can occur with O. furnacalis, and the taxa can be hard to tell apart.

References

  1. The Insects; Structure and Function, 4th Edition. R.F. Chapman, Cambridge University Press, 1998. ISBN   0-521-57048-4, p 403.
  2. Bulletin of Entomological Research (1976), 66:75-79 Cambridge University Press, Copyright Cambridge University Press 1976, Diapause of the southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera, Pyralidae): effects of a juvenile hormone mimic: G. M. Chippendalea1 and C.-M. Yina1a1, Department of Entomology, University of Missouri, Columbia, Missouri 65201, U.S.A.
  3. Phenological adaptations of a colonizing insect: The southwestern corn borer, Diatraea grandiosella, Journal Oecologia. Publisher Springer Berlin / Heidelberg, ISSN 0029-8549 (Print) 1432-1939 Issue Volume 53, Number 3 / June, 1982 doi : 10.1007/BF00389019.
  4. Juvenile hormone regulation of the larval diapause of the Southwestern corn borer, Diatraea grandiosella. C.-M. Yina and G.M. Chippendale. Journal of Insect Physiology Volume 19, Issue 12, December 1973, Pages 2403-2420
  5. A Bibliography of the Southwestern Corn Borer, Diatraea grandiosella Dyar (Lepidoptera: Pyralidae) Authors: Morrison, W. P.; Mock, D. E.; Stone, J. D.; Whitworth, J. Source: Bulletin of the ESA, Volume 23, Number 3, 15 September 1977, Publisher: Entomological Society of America. pp. 185-190(6)
  6. A Bibliography of the Southwestern Corn Borer, Diatraea grandiosella Dyar (Lepidoptera: Pyralidae) Authors: Morrison, W. P.; Mock, D. E.; Stone, J. D.; Whitworth, J. Source: Bulletin of the ESA, Volume 23, Number 3, 15 September 1977, Publisher: Entomological Society of America. pp. 185-190(6)
  7. "Southwestern Corn Borer, (Diatraea grandiosella) Pheromone Lure". Arbico-organics.com. Retrieved 2011-10-10.
  8. G. Michael Chippendale1, Department of Entomology, University of Missouri, Entomologia Experimentalis et Applicata; Publisher: Springer Netherlands, ISSN 0013-8703 (Print) 1570-7458 (Online) Issue Volume 31, Number 1 / March, 1982, Pages 24-35, Friday, December 5, 200865211 Columbia, Missouri
  9. Aronson AI, Shai Y (2001). "Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action". FEMS Microbiology Letters. 195 (1): 1–8. doi : 10.1111/j.1574-6968.2001.tb10489.x. PMID   11166987.
  10. The First Decade of Genetically Engineered Crops in the United States. Jorge Fernandez-Cornejo and Margriet Caswell, United States Department of Agriculture, Economic Research Service Electronic Report Economic Information Bulletin, Number 11. April 2006.
  11. The First Decade of Genetically Engineered Crops in the United States. Jorge Fernandez-Cornejo and Margriet Caswell, United States Department of Agriculture, Economic Research Service Electronic Report Economic Information Bulletin, Number 11. April 2006. p.6
  12. Bale, F; van Lenteren; Bigler (27 February 2008). "Biological control and sustainable food production". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363 (1492): 761–776. doi : 10.1098/rstb.2007.2182. PMID   17827110.