TFX Program

Last updated
Tactical Fighter Experimental (TFX)
AFR F-111 air to air refueling.jpg
The winning aircraft, the F-111 Aardvark
Issued by United States Air Force
Proposals General Dynamics F-111 Aardvark
Boeing 818
OutcomeGeneral Dynamics F-111 selected for production

The United States Air Force and Navy were both seeking new aircraft when Robert McNamara was appointed U.S. Secretary of Defense in January 1961. [1] The aircraft sought by the two armed services shared the need to carry heavy armament and fuel loads, feature high supersonic speed, twin engines and two seats, and probably use variable geometry wings. [2] On 14 February 1961, McNamara formally directed the services to study the development of a single aircraft that would satisfy both requirements. Early studies indicated that the best option was to base the design on the Air Force requirement, and use a modified version for the Navy. [3] In June 1961, Secretary McNamara ordered the go ahead of Tactical Fighter Experimental (TFX) despite Air Force and Navy efforts to keep their programs separate. [4]

Contents

Proposals were received from Boeing, General Dynamics, Lockheed, McDonnell, North American and Republic. The evaluation group found all the proposals lacking, but Boeing and General Dynamics were selected to submit enhanced designs. The Boeing 818 was recommended by the selection board in January 1962, with the exception of the engine, which was not considered acceptable. Switching to a crew escape capsule instead of ejection seats and alterations to radar and missile storage were also needed. Both companies provided updated proposals in April 1962. Air Force reviewers favored Boeing's offering, while the Navy found both submissions unacceptable for its operations. Two more rounds of updates to the proposals were conducted, with Boeing being picked by the selection board. [5]

In November 1962, McNamara selected General Dynamics' proposal due to its greater commonality between Air Force and Navy versions. The Boeing aircraft shared less than half of the major structural components. General Dynamics signed the TFX contract in December 1962. A Congressional investigation followed, but could not change the selection. [5] The winning proposal later became the General Dynamics F-111 Aardvark.

Related Research Articles

<span class="mw-page-title-main">General Dynamics F-111 Aardvark</span> Family of strike aircraft

The General Dynamics F-111 Aardvark is a retired supersonic, medium-range, multirole combat aircraft. Production models of the F-111 had roles that included attack, strategic bombing, reconnaissance and electronic warfare. Aardvark comes from a South African animal that has a long nose and hugs the terrain. It is an Afrikaans word that translates literally as "earth pig"—hence the aircraft's "Pig" nickname during its Australian service.

<span class="mw-page-title-main">Variable-sweep wing</span> Airplane wings capable of changing position to alter their geometry

A variable-sweep wing, colloquially known as a "swing wing", is an airplane wing, or set of wings, that may be modified during flight, swept back and then returned to its previous straight position. Because it allows the aircraft's shape to be changed, it is an example of a variable-geometry aircraft.

<span class="mw-page-title-main">Grumman A-6 Intruder</span> 1960 attack strike aircraft family by Grumman

The Grumman A-6 Intruder is an American twinjet all-weather attack aircraft developed and manufactured by American aircraft company Grumman Aerospace and formerly operated by the U.S. Navy and U.S. Marine Corps.

<span class="mw-page-title-main">Convair B-58 Hustler</span> Cold War-era American supersonic bomber

The Convair B-58 Hustler, designed and produced by American aircraft manufacturer Convair, was the first operational bomber capable of Mach 2 flight.

<span class="mw-page-title-main">North American A-5 Vigilante</span> Cold War-era U.S. carrier-based supersonic bomber

The North American A-5 Vigilante is an American carrier-based supersonic bomber designed and built by North American Aviation (NAA) for the United States Navy. Before the 1962 unification of Navy and Air Force designations, it was designated A3J.

<span class="mw-page-title-main">LTV A-7 Corsair II</span> American attack aircraft family

The LTV A-7 Corsair II is an American carrier-capable subsonic light attack aircraft designed and manufactured by Ling-Temco-Vought (LTV).

<span class="mw-page-title-main">Northrop YF-17</span> Prototype fighter aircraft for the US military

The Northrop YF-17 was a prototype lightweight fighter aircraft designed by Northrop aviation for the United States Air Force's Lightweight Fighter (LWF) technology evaluation program. The LWF was initiated because many in the fighter community believed that aircraft like the F-15 Eagle were too large and expensive for many combat roles. The YF-17 was the culmination of a long line of Northrop designs, beginning with the N-102 Fang in 1956, continuing through the F-5 family.

<span class="mw-page-title-main">Northrop YF-23</span> Prototype demonstrator aircraft for the U.S. Air Force Advanced Tactical Fighter program

The Northrop/McDonnell Douglas YF-23 is an American single-seat, twin-engine, stealth fighter technology demonstrator prototype designed for the United States Air Force (USAF). The design team, with Northrop as the prime contractor, was a finalist in the USAF's Advanced Tactical Fighter (ATF) demonstration/validation competition, battling the YF-22 team for full-scale development and production. Two YF-23 prototypes were built.

<span class="mw-page-title-main">McDonnell Douglas A-12 Avenger II</span> Proposed carrier-based strike aircraft

The General Dynamics/McDonnell Douglas A-12 Avenger II was a proposed American attack aircraft from General Dynamics and McDonnell Douglas. It was to be an all-weather, carrier-based stealth bomber replacement for the Grumman A-6 Intruder in the United States Navy and Marine Corps. Its Avenger II name was taken from the Grumman TBF Avenger of World War II.

<span class="mw-page-title-main">Advanced Tactical Fighter</span> U.S. Air Force stealth air superiority fighter program

The Advanced Tactical Fighter (ATF) was a program undertaken by the United States Air Force to develop a next-generation air superiority fighter to replace the F-15 Eagle in order to counter emerging worldwide threats in the 1980s, including Soviet Sukhoi Su-27 and Mikoyan MiG-29 fighters under development, Beriev A-50 airborne warning and control systems (AWACS), and increasingly sophisticated surface-to-air missile systems. The ATF would make a leap in performance and capability by taking advantage of emerging technologies, including advanced avionics and flight control systems, more powerful propulsion systems, and stealth technology.

<span class="mw-page-title-main">Lockheed YF-22</span> Prototype demonstrator aircraft for the U.S. Air Force Advanced Tactical Fighter program

The Lockheed/Boeing/General Dynamics YF-22 is an American single-seat, twin-engine, stealth fighter technology demonstrator prototype designed for the United States Air Force (USAF). The design team, with Lockheed as the prime contractor, was a finalist in the USAF's Advanced Tactical Fighter (ATF) competition, and two prototypes were built for the demonstration/validation phase. The YF-22 team won the contest against the YF-23 team for full-scale development and the design was developed into the Lockheed Martin F-22. The YF-22 has a similar aerodynamic layout and configuration as the F-22, but with notable differences in the overall shaping such as the position and design of the cockpit, tail fins and wings, and in internal structural layout.

<span class="mw-page-title-main">Douglas F6D Missileer</span> Proposed US Navy fighter jet

The Douglas F6D Missileer was a proposed carrier-based fleet defense fighter designed by Douglas Aircraft Company in response to a 1959 United States Navy requirement. It was designed to be able to loiter for extended periods at a relatively long distance from the Navy's aircraft carriers, engaging hostile aircraft 100 miles (160 km) away with its powerful radar and long-range missiles. Since the enemy would be fired on long before they reached visual range, the aircraft had little dogfighting capability and was strictly subsonic. When doubts were expressed about the Missileer's ability to defend itself after firing its missiles, the value of the project was questioned, leading to its cancellation. Some of the Missileer's systems, primarily the engines, radar, and missiles, continued development in spite of the cancellation, eventually emerging on the ill-fated General Dynamics–Grumman F-111B and successful Grumman F-14 Tomcat years later.

TFX may refer to:

The United Aircraft Corporation was an American aircraft manufacturer formed by the break-up of United Aircraft and Transport Corporation in 1934. In 1975, the company became United Technologies, which in 2020 merged with Raytheon, later renamed RTX Corporation.

<span class="mw-page-title-main">Lightweight Fighter program</span> United States Air Force technology evaluation program

The Lightweight Fighter (LWF) program was a United States Air Force technology evaluation program initiated in the late 1960s by a group of officers and defense analysts known as the "Fighter Mafia". It was spurred by then-Major John Boyd's 'energy-maneuverability' (E-M) theory, which indicated that excessive weight would have severely debilitating consequences on the maneuverability of an aircraft. Boyd's design called for a light-weight fighter with a high thrust-to-weight ratio, high maneuverability, and a gross weight of less than 20,000 lb (9,100 kg), half that of its counterpart, the McDonnell Douglas F-15 Eagle. It resulted in the development of the General Dynamics YF-16 and Northrop YF-17. Late in the program, in 1974, with the promise of European sales, the Air Force changed the program name to Air Combat Fighter (ACF), and committed to purchasing 650 models of the YF-16, adopted as the F-16 Fighting Falcon. The U.S. Navy adopted a modified version of the YF-17 as the McDonnell Douglas F/A-18 Hornet.

<span class="mw-page-title-main">General Dynamics–Grumman EF-111A Raven</span> Electronic warfare aircraft

The General Dynamics–Grumman EF-111A Raven is a retired electronic-warfare aircraft designed to replace the EB-66 Destroyer in the United States Air Force. Its crews and maintainers often called it the "Spark-Vark", a play on the F-111's "Aardvark" nickname.

<span class="mw-page-title-main">General Dynamics–Grumman F-111B</span> US Navy prototype long range interceptor (1965)

The General Dynamics–Grumman F-111B was a long-range carrier-based interceptor aircraft planned as a follow-on to the McDonnell Douglas F-4 Phantom II for the United States Navy (USN).

<span class="mw-page-title-main">General Dynamics F-111C</span> Military interdictor and tactical strike aircraft

The General Dynamics F-111C is a variant of the F-111 Aardvark medium-range interdictor and tactical strike aircraft, developed by General Dynamics to meet Australian requirements. The design was based on the F-111A model but included longer wings and strengthened undercarriage. The Australian government ordered 24 F-111Cs to equip the Royal Australian Air Force (RAAF) in 1963, but the aircraft were not delivered until 1973 because of long-running technical problems. During 1979 and 1980 four of these aircraft were converted to the RF-111C reconnaissance variant. Four ex–United States Air Force (USAF) F-111As were purchased by Australia and converted to F-111C standard in 1982 to replace F-111Cs destroyed during accidents. Australia also operated 15 F-111Gs between 1993 and 2007, mainly for conversion training. The RAAF retired its remaining F-111Cs in December 2010. In Australian military and aviation circles, the F-111 Aardvark was affectionately known as the "Pig", due to its long snout and terrain-following ability.

<span class="mw-page-title-main">General Dynamics F-111K</span> Type of aircraft

The General Dynamics F-111K was a planned variant of the General Dynamics F-111 Aardvark medium-range interdictor and tactical strike aircraft by General Dynamics, to meet a Royal Air Force requirement for such an aircraft.

<span class="mw-page-title-main">General Dynamics–Boeing AFTI/F-111A Aardvark</span> American research aircraft

The General Dynamics–Boeing AFTI/F-111A Aardvark is a research aircraft modified from a General Dynamics F-111 Aardvark to test a Boeing-built supercritical mission adaptive wing (MAW). This MAW, in contrast to standard control surfaces, could smoothly change the shape of its airfoil in flight.

References

Citations

  1. Miller 1982, p. 13.
  2. Gunston 1983, p. 16.
  3. Gunston 1983, pp. 8–17.
  4. Eden 2004, pp. 196–7.
  5. 1 2 Gunston 1983, pp. 18–20.

Bibliography

  • Eden, Paul, ed. (2004). "General Dynamics F-111 Aardvark/EF-111 Raven". Encyclopedia of Modern Military Aircraft. London: Amber Books. ISBN   1-904687-84-9.
  • Gunston, Bill (1983). F-111. Modern Fighting Aircraft. Vol. 3. New York: Salamander Books. ISBN   0-668-05904-4.
  • Miller, Jay (1982). General Dynamics F-111 "Aardvark". Fallbrook, California: Aero Publishers. ISBN   0-8168-0606-3.