YQM-94 B-Gull Compass Cope B | |
---|---|
General information | |
Type | Unmanned Aerial Vehicle (UAV) |
Manufacturer | Boeing |
Status | Canceled |
Primary user | United States Air Force |
History | |
First flight | 28 July 1973 |
The Boeing YQM-94 B-Gull (also called Compass Cope B) is a developmental aerial reconnaissance drone developed by Boeing. It could take off and land from a runway like a manned aircraft, and operate at high altitudes for up to 24 hours to perform aerial surveillance, communications relay, or atmospheric sampling.
Compass Cope was a program initiated by the United States Air Force (USAF) in 1971 to develop an upgraded reconnaissance drone that could take off and land from a runway like a manned aircraft, and operate at high altitudes for up to 24 hours to perform surveillance, communications relay, or atmospheric sampling. Two aircraft, the Boeing YQM-94 Compass Cope B, and the Ryan Aeronautical YQM-98A Compass Cope R participated in the program.[ citation needed ]
Boeing was originally selected as a sole source for the Compass Cope program, with the USAF awarding the company a contract for two YQM-94A (later YGQM-94A) demonstrator vehicles in 1971. However, Ryan then pitched an alternative, and the next year the USAF awarded Ryan a contract for two YQM-98A (later YGQM-98A) demonstrators as well.[ citation needed ]
The Boeing YQM-94A is a cantilever shoulder-wing monoplane, basically a jet-powered sailplane, with long straight wings, a twin fin tail, retractable tricycle landing gear, and a turbojet housed in a pod on its back. The engine was a General Electric YJ97-GE-100 providing 5,270 lb (2,390 kg) thrust. The YQM-94A was constructed using aluminium and fiberglass. The lower half of the circular-section fuselage was glass-fibre honeycomb, the same material used for radomes. The wings of the YQM-94A were constructed of aluminium-skinned honeycomb with a fiberglass core which insulated the fuel tanks from the cold encountered at the altitudes it was flown. [1]
Since the YQM-94A was a demonstrator, it used some off-the-shelf components to reduce costs. The datalink was based on the AN/TPW-2A X-band radar. The flight control system was derived from a system developed by the Sperry Corporation for the Beechcraft QU-22B Pave Eagle. The Compass Cope B was controlled remotely from the ground with no autonomous guidance capability. A television camera in the nose allowed it to be remotely flown by a ground-based pilot. The undercarriage for the YQM-94B came from a Rockwell Commander. The YQM-94's fuselage sits lower than the Rockwell Commander, so Boeing used this as a lift-dumping system. As the aircraft settled down on its specially strengthened nose wheel, the wing was placed in a negative angle of attack. [1]
The remote control system was tested using a Cessna 172 aircraft over a ten-month period. Boeing choose the Cessna 172 because its approach speed and wing loading were close to that of the YQM-94. At the end of 1971, the YQM-94 remote control system had been tested during 150 flights using eight different remote pilots to control the Cessna 172. Ninety of those flights occurred at night with a low light level television system. A safety check pilot was on board the Cessna 172 as it was flown remotely from the ground. On three occasions, this pilot took over manual control of the Cessna to avoid collisions with other aircraft and during a failure of the remote control system. [1]
Initial flight of the first YQM-94A demonstrator was on 28 July 1973, at Edwards Air Force Base. This aircraft crashed on its second flight on 4 August 1973. The prototype was lost because a damaged piece of mylar insulation caused an electrical short-circuit in a rudder accelerometer. The erroneous signals generated by this accelerometer caused random rudder movements. This problem was compounded by an erroneous airspeed indication for the ground pilot and a control problem because the left wing was heavier than it should have been. These problems resulted in a hard landing which caused irreparable damage to the first prototype. [1]
The second demonstrator performed its first flight on 2 November 1974, and completed the evaluation program. Later tests of this aircraft included a successful endurance flight of 17 hours 24 minutes at altitudes of more than 55,000 feet (16,800 m). [2] This aircraft was retired to the National Museum of the United States Air Force in September 1979. [3]
Ryan's entry into the competition was an updated variant of the Model 154 / AQM-91 Firefly, which it called the Model 235. Initial flight of the first Compass Cope R demonstrator was in August 1974. However, the Boeing Compass Cope B won the competition in August 1976 on the basis of lower cost, with the company awarded a contract to build preproduction prototypes of the YQM-94B operational UAV.
Since the evaluation of the Compass Cope prototypes had shown the Ryan YQM-98 to be superior to the Boeing YQM-94A in some respects, Ryan challenged the award. However, that challenge became less relevant when the entire Compass Cope program was cancelled in July 1977, apparently because of difficulties in developing sensor payloads for the aircraft.[ citation needed ]
Data fromJane's All the World's Aircraft 1973-74 [4]
General characteristics
Performance
Aircraft of comparable role, configuration, and era
The Boeing B-47 Stratojet is a retired American long-range, six-engined, turbojet-powered strategic bomber designed to fly at high subsonic speed and at high altitude to avoid enemy interceptor aircraft. The primary mission of the B-47 was as a nuclear bomber capable of striking targets within the Soviet Union.
The Northrop T-38 Talon is a two-seat, twinjet supersonic jet trainer designed and produced by the American aircraft manufacturer Northrop Corporation. It was the world's first supersonic trainer as well as the most produced.
The Cessna T-37 Tweet is a small, economical twin-engine jet trainer aircraft. It was flown for decades as a primary trainer of the United States Air Force (USAF) as well as in the air forces of several other nations.
The Lockheed F-94 Starfire is a first-generation jet powered all-weather day/night interceptor aircraft designed and produced by Lockheed Corporation. It was the first operational United States Air Force (USAF) fighter equipped with an afterburner as well as being the first jet-powered all-weather fighter to enter combat during the Korean War.
The Convair B-58 Hustler, designed and produced by American aircraft manufacturer Convair, was the first operational bomber capable of Mach 2 flight.
The Cessna A-37 Dragonfly, or Super Tweet, is a light attack aircraft designed and produced by the American aircraft manufacturer Cessna.
The Boeing X-45 unmanned combat air vehicle is a concept demonstrator for a "next generation" of completely autonomous military aircraft, developed by Boeing's Phantom Works. Manufactured by Boeing Integrated Defense Systems, the X-45 was a part of DARPA's J-UCAS project.
The Iven C. Kincheloe Award recognizes outstanding professional accomplishment in the conduct of flight testing. It was established in 1958 by the Society of Experimental Test Pilots in memory of test pilot and Korean War ace Iven C. Kincheloe, United States Air Force, who died during flight testing.
The Lockheed DC-130 is a variant of the C-130 Hercules modified for drone control. It can carry four Ryan Firebee drones underneath its wings.
US Air Force Flight Dynamics Laboratory is located at Wright-Patterson Air Force Base and is part of the Air Force Wright Laboratory. The Laboratory was eventually merged into the Air Force Research Laboratory in 1997.
Unmanned aerial vehicles (UAVs) include both autonomous drones and remotely piloted vehicles (RPVs). A UAV is capable of controlled, sustained level flight and is powered by a jet, reciprocating, or electric engine. In the twenty-first century, technology reached a point of sophistication that the UAV is now being given a greatly expanded role in many areas of aviation.
The Rockwell RPRV-870 HiMAT is an experimental remotely piloted aircraft that was produced for a NASA program to develop technologies for future fighter aircraft. Among the technologies explored were close-coupled canards, fully digital flight control, composite materials, remote piloting, synthetic vision systems, winglets, and others.
The Ryan AQM-91 Firefly was a developmental drone developed during the Vietnam War to perform long-range reconnaissance, especially into China.
Fitzhugh L. "Fitz" Fulton, Jr., , was a civilian research pilot at NASA's Dryden Flight Research Center, Edwards, California, from August 1, 1966, until July 3, 1986, following 23 years of distinguished service as a pilot in the U.S. Air Force.
The Boeing AH-6 is a series of light helicopter gunships based on the MH-6 Little Bird and MD 500 family. Developed by Boeing Rotorcraft Systems, these include the Unmanned Little Bird (ULB) demonstrator, the A/MH-6X Mission Enhanced Little Bird (MELB), and the proposed AH-6I and AH-6S.
A high-altitude platform station, also known as atmospheric satellite, is a long endurance, high altitude aircraft able to offer observation or communication services similarly to artificial satellites. Mostly unmanned aerial vehicles (UAVs), they remain aloft through atmospheric lift, either aerodynamic like airplanes, or aerostatic like airships or balloons. High-altitude long endurance (HALE) military drones can fly above 60,000 ft over 32 hours, while civil HAPS are radio stations at an altitude of 20 to 50 km above waypoints, for weeks.
The Ryan YQM-98 R-Tern was a developmental aerial reconnaissance drone developed by Ryan Aeronautical. It could take off and land from a runway like a manned aircraft, and operate at high altitudes for up to 24 hours to perform surveillance, communications relay, or atmospheric sampling.
Compass Cope was a program initiated by the United States Air Force to develop an upgraded reconnaissance Unmanned aerial vehicle. The two aircraft that participated in the program were:
The General Electric J97 is a single-shaft turbojet engine designed and built by General Electric as a compact high-performance engine for light attack fighters and eventually a number of drone projects.