MGM-31 Pershing

Last updated

The MGM-31A Pershing was the missile used in the Pershing 1 and Pershing 1a field artillery missile systems. [lower-alpha 1] It was a solid-fueled two-stage theater ballistic missile designed and built by Martin Marietta to replace the PGM-11 Redstone missile as the primary nuclear-capable theater-level weapon of the United States Army and replaced the MGM-1 Matador cruise missiles operated by the German Air Force. Pershing later replaced the European-based MGM-13 Mace cruise missiles deployed by the United States Air Force and the German Air Force. Development began in 1958, with the first test missile fired in 1960, the Pershing 1 system deployed in 1963 and the improved Pershing 1a deployed in 1969. The U.S. Army replaced the Pershing 1a with the Pershing II Weapon System in 1983 while the German Air Force retained Pershing 1a until all Pershings were eliminated in 1991. The U.S. Army Missile Command (MICOM) managed the development and improvements while the Field Artillery Branch deployed the systems and developed tactical doctrine.

Contents

Pershing 1

Pershing 1 [lower-alpha 1]
Pershing 1 launch (Feb 16, 1966).png
Pershing round 32 launched from Hueco Range, Texas by A Battery, 2nd Battalion, 44th Field Artillery, targeted for White Sands Missile Range on 20 August 1963
Type Short-range ballistic missile
Place of originUnited States
Service history
In service1962–1969
Used by
Production history
Designer The Martin Company
Designed1958–1960
ManufacturerThe Martin Company Martin Marietta
Produced1960–1969
No. built754 MGM-31A missiles
Specifications
Mass10,275 pounds (4,661 kg) [1]
Length34.6 feet (10.5 m)
Diameter40 inches (1 m)
Blast yield
  • W50 nuclear warhead
  • 60 kilotons of TNT (0.25 PJ)
  • 200 kilotons of TNT (0.84 PJ)
  • 400 kilotons of TNT (1.7 PJ)

Engine
  • First stage: Thiokol TX-174
  • 25,900 pounds-force (115 kN) 38.3 s
  • Second stage: Thiokol TX-175
  • 19,100 pounds-force (85 kN) 39 s
Operational
range
460 miles (740 km)
Boost time77.3 seconds
Maximum speed Mach 8
Guidance
system
Eclipse-Pioneer ST-120 inertial guidance
Steering
system
Jet vanes, air vanes
Accuracy1,310 feet (400 m) circular error probable
Launch
platform
M474 transporter erector launcher

Development

Pershing missile (34.6 feet length, 460-mile range) and Redstone missile (69.3 feet length, 201-mile range) Pershing and Redstone.jpg
Pershing missile (34.6 feet length, 460-mile range) and Redstone missile (69.3 feet length, 201-mile range)

George Bunker, president of the Martin Company, paid a courtesy call on General John Medaris, USA, of the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal, Alabama in 1956. [2] Medaris noted that it would be helpful to the Army if there was a missile plant near the Air Force Missile Test Center (present-day Cape Canaveral Air Force Station) in Florida. The Martin Company subsequently began construction of their Sand Lake facility in Orlando, Florida which opened in late 1957. Edward Uhl, the co-inventor of the bazooka, was the vice-president and general manager of the new factory, which continues to operate today as the Lockheed Martin Missiles and Fire Control facility.

The U.S. Army began studies in 1956 for a ballistic missile with a range of about 500–750 nautical miles (930–1,390 km; 580–860 mi). Later that year, Secretary of Defense Charles Erwin Wilson issued the "Wilson Memorandum" that removed from the U.S. Army all missiles with a range of 200 miles (320 km) or more. [3] The United States Department of Defense (DoD) rescinded the memorandum in 1958 and ABMA began development of the class of ballistic missile.

The missile was initially called the Redstone-S, where the S meant solid propellant (and the name Redstone came from the Redstone missile it was supposed to replace), but renamed to Pershing in honor of General of the Armies John J. Pershing. ABMA selected seven companies to develop engineering proposals: Chrysler, the Lockheed Corporation, the Douglas Aircraft Company, the Convair Division of General Dynamics, the Firestone Corp., the Sperry-Rand Company, and the Martin Company. [2]

The Secretary of the Army, Wilber M. Brucker, the former governor of Michigan – was apparently under pressure from his home state to award the contract to a company in Michigan. [2] Chrysler was the only contractor from Michigan, but Medaris persuaded Brucker to leave the decision entirely in the hands of the ABMA. After a selection process by General Medaris and Dr. Arthur Rudolph, the Martin Company (later Martin Marietta after a merger in 1961) was awarded a CPFF (cost-plus-fixed-fee) contract for research, development, and first production of the Pershing system under the technical supervision and concept control of the government. Martin's quality control manager for the Pershing, Phil Crosby developed the concept of Zero Defects that enhanced the production and reliability of the system.

The first launch of the XM14 R&D Pershing 1 test missile (P-01) was on 25 February 1960. The first launch from the tactical transporter erector launcher (TEL) was on 26 July 1960 (P-06). [4] For training there was an inert Pershing 1 missile designated XM19. In June 1963, the XM14 and XM19 Pershing missiles were redesignated as XMGM-31A and XMTM-31B, respectively. The production version of the tactical missile was later designated as MGM-31A and the XMTM-31B designation was dropped.

Deployment

President Eisenhower viewed the Pershing missile when he visited Cape Canaveral on 11 February 1960, [5] and at Fort Benning on 5 May 1960 as part of Project MAN (Modern Army Needs). [6] [7] President Kennedy viewed Pershing three times: as part of the inaugural parade in 1961, [8] [9] at Fort Bragg on 12 October 1961, [10] and at White Sands Missile Range in 1963. [11]

Plans were for the organization of ten missile battalions: one at Fort Sill, one in Korea and eight in West Germany; this was eventually reduced to one battalion at Fort Sill and three in West Germany. [12]

Each missile battalion organized at Fort Sill for deployment. The first tactical Pershing unit was the 2nd Missile Battalion, 44th Artillery Regiment, followed by the 4th Missile Battalion, 41st Artillery Regiment deployed to Schwäbisch Gmünd and the 1st Missile Battalion, 81st Artillery to McCully Barracks in Wackernheim. Each missile battalion had four launchers.

The 2nd Missile Battalion, 79th Artillery Regiment formed for deployment to South Korea in February 1964. The deployment was placed on hold and the battalion supported the 56th Artillery Group and the German Air Force missile wings when they launched missiles from White Sands Missile Range. The 85th U.S. Army Field Artillery Detachment was organized in Fort Sill in November 1966 and attached to 2/79th Artillery. The deployment to Korea was canceled and the 2/79th Artillery was deactivated.

The Secretary of Defense assigned the Pershing weapon system to a Quick Reaction Alert (QRA) role in 1964 after a DoD study showed that the Pershing would be superior to tactical aircraft for the QRA mission. The German Air Force began training at Fort Sill. Each missile battalion was then authorized six launchers. [13] In 1965 this increased to eight launchers, two per firing battery. By 1965, three U.S. Army battalions and two German Air Force wings were operational in Germany. The 579th Ordnance Company was tasked with maintenance and logistical general support for the Pershing artillery units in Germany.

Missile

Two Thiokol solid-propellant motors powered the Pershing 1 missile. Since a solid-propellant motor cannot be turned off, the missile used thrust reversal and case venting for a selective range. Splice bands and explosive bolts attached the rocket motors. The missile was controlled by an analog guidance computer using a ball-and-disk integrator and a control computer. As directed by the onboard computers, the bolts exploded and ejected the splice band. Another squib would open the thrust reversal ports in the forward end of the stage and ignite the propellant in the forward end, causing the motor to reverse direction. Testing found that the second stage would draft behind the warhead and cause it to drift off course, so explosive charges on the side of the motor opened the case and vented the propellant. The range could be graduated but the maximum was 740 kilometres (400 nmi). Jet vanes in the motor nozzles and air vanes on the motor case steered the missile. The onboard analog guidance computer and the Eclipse-Pioneer ST-120 (Stable Table-120) inertial navigation system provided guidance. The warhead could be conventional explosive or a W50 nuclear weapon with three yield options— the Y1 with 60 kiloton yield, Y2 with 200 kiloton yield and Y3 with 400 kiloton yield; the conventional warhead was never deployed.

Ground equipment

The Pershing 1 firing platoon consisted of four M474 tracked-vehicles manufactured by FMC Corporation— by comparison, Redstone needed twenty vehicles. The transporter erector launcher (TEL) transported the two stages and the guidance section as an assembly and provided the launch platform after the warhead was mated. It used a removable erector launcher manufactured by Unidynamics. The warhead carrier transported the warhead, the missile fins and the azimuth laying set used to position the missile. The PTS/PS carrier transported the programmer test station (PTS) and power station (PS). A fourth vehicle transported the Radio Terminal Set. The four vehicles were known as the land train.

The PTS featured rapid missile checkout and countdowns, with complete computer control, and automatic self-test and malfunction isolation. Additionally, the PTS would perform tests that simulated airborne missile operation, programmed the trajectory of the missile and controlled the firing sequence. Plug-in micromodules increased maintainability and allowed the PTS operator to perform 80% of all repairs at the firing position. A turbine driven Power Station mounted behind the PTS, provided the primary electrical and pneumatic power and conditioned air for the missile and ground support equipment at the firing position.

Collins Radio Company produced the AN/TRC-80 Radio Terminal Set specifically for the Pershing system. The "Track 80" used an inflatable dish antenna to provide line-of-sight or tropospheric-scatter voice and teleprinter communications between missile firing units and higher headquarters. The erector-launcher, PTS, PS and RTS could be removed from the carriers and air-transported in fourteen CH-47 Chinook loads. [14]

Orientation

The missile was positioned or laid in on a pre-surveyed site with a system of two theodolites and a target card. Directional control passed from one theodolite to the one next to the missile. The missile then oriented to north by an operator using a horizontal laying theodolite aimed at a window in the guidance section of the missile. Using a control box, the ST-120 inertial navigation system in the guidance section rotated into alignment and the north direction programmed into the computer.

Satellite launcher

Model of the Pegasus satellite launcher system Pegasus (Topping model).png
Model of the Pegasus satellite launcher system

In 1961, Martin proposed a satellite launch system based on the Pershing. Named Pegasus, it would have had a lighter, simplified guidance section and a short third stage booster. [15] A 60-pound (27 kg) payload could be boosted to a 210 miles (340 km) circular orbit, or to an elliptical orbit with a 700 miles (1,130 km) apogee. Pegasus would have used the Pershing erector-launcher and could be placed in any open area. Martin seems to have targeted the nascent European space program, but this system was never developed.

APL

In 1965, the Army contracted with the Applied Physics Laboratory (APL) of Johns Hopkins University to develop and implement a test and evaluation program. [16] APL provided technical support to the Pershing Operational Test Unit (POTU), identified problem areas and improved the performance and survivability of the Pershing systems. [17]

Pershing 1a

Pershing 1a
Launch of Pershing IA (26 Oct 1976).png
Pershing 1a launched from the Eastern Range, Cape Canaveral Air Force Station, Launch Complex 16 by C Battery, 3rd Battalion, 84th Field Artillery on 26 October 1976
TypeSurface-to-surface guided missile
Place of originUnited States
Service history
In service1969–1991
Used by
Production history
Designer Martin Marietta
Designed1965–1969
ManufacturerMartin Marietta
Produced1969
No. built754 MGM-31A missiles
Specifications
Mass10,275 pounds (4,661 kg) [1]
Length34.6 feet (10.5 m)
Diameter40 inches (1 m)
Blast yield
  • W50 nuclear warhead
  • 60 kilotons of TNT (0.25 PJ)
  • 200 kilotons of TNT (0.84 PJ)
  • 400 kilotons of TNT (1.7 PJ)

Engine
  • First stage: Thiokol TX-174
  • 25,900 pounds-force (115 kN) 38.3 s
  • Second stage: Thiokol TX-175
  • 19,100 pounds-force (85 kN) 39 s
Operational
range
460 miles (740 km)
Boost time77.3 seconds
Maximum speed Mach 8
Guidance
system
Eclipse-Pioneer ST-120 inertial guidance
Steering
system
Jet vanes, air vanes
Accuracy1,310 feet (400 m) circular error probable
Launch
platform
M790 erector launcher
Transport M757 5-ton tractor

Development

In 1964 a series of operational tests and follow-on tests were performed to determine Pershing reliability. The Secretary of Defense then requested that the Army define the modifications required to make Pershing suitable for the Quick Reaction Alert (QRA) role. The Pershing 1a development program was approved in 1965, the original Pershing renamed to Pershing 1 and Martin Marietta received the Pershing 1a production contract in 1967. Project SWAP replaced all the Pershing equipment in Germany by mid-1970 and the first units quickly achieved QRA status. Secretary of Defense Robert McNamara directed that the U.S. Air Force's MGM-13 Mace missile would be replaced by the Pershing 1a in 1965. [18]

Pershing 1a was a Quick Reaction Alert system and so had faster vehicles, launch times and newer electronics. [19] The total number of launchers increased from 8 to 36 per battalion. Production of the Pershing 1a missile ended in 1975 and reopened in 1977 to replace missiles expended in training.

Pershing 1a was further improved in 1971 with the Pershing Missile and Power Station Development Program. The analog guidance computer and the control computer in the missile were replaced by a single digital guidance and control computer. The main distributor in the missile that routed power and signals was replaced with a new version. The missile used a rotary inverter to convert DC to AC that was replaced by a solid-state static inverter. The power station was improved for accessibility and maintenance. [20] Further improvements in 1976 allowed the firing of a platoon's three missiles in quick succession and from any site without the need for surveying. [21] The Automatic Reference System (ARS) used an optical laser link and a north-seeking gyro with encode to eliminate the need for pre-selected and surveyed points. The Sequential Launch Adapter connected the PTS to three missiles, eliminating the need to cable and uncable each launcher.

A total of 754 MGM-31A missiles were built. [1]

Deployment

The battalions in Europe reorganized under a new table of organization and equipment (TOE); an infantry battalion was added to provide additional security; and the 56th Artillery Group was reorganized and redesignated the 56th Field Artillery Brigade. Due to the nature of the weapon system, officer positions were increased by one grade: batteries were commanded by a major instead of a captain; battalions were commanded by a colonel; and the brigade was commanded by a brigadier general. [22] :2-4

Pershing 1a was deployed with three U.S. battalions in Europe and two German Air Force wings. Each battalion or wing had 36 mobile launchers. The constitution of West Germany prohibited owning nuclear weapons, thus control of the nuclear warheads remained in the hands of the U.S. Army. During peacetime operations, a portion of the Pershing 1a assets were deployed on the QRA mission. The remainder would be conducting field training or were maintained in kasernes awaiting alert. The system was designed to be highly mobile, permitting its dispersal to clandestine sites in times of alert or war and was deployed at distances greater than 100 km behind the forward edge of battle area or political border. Owing to its mobility and setback, Pershing was considered one of the most survivable theater nuclear weapons ever deployed in Europe.

The primary mission in the Supreme Allied Commander, Europe scheduled plan took one of two forms: peacetime or an increased state of readiness called the period of tension. Different levels or techniques of tasking were used for these mission forms. The peacetime Quick Reaction Alert role required that for each battalion or wing, one firing battery or a portion thereof would be combat alert status (CAS) on a permanent hard site, covering assigned targets.

In peacetime the four batteries of each battalion rotated through four states or conditions of alert readiness, the highest being that of the CAS battery. The purpose of this rotation was to assume the CAS status, to share the burden of CAS responsibility, to provide time for field tactical training and equipment maintenance, and to give ample leave and pass time to personnel without adverse impact on operational requirements.

During periods of increased tension, the firing batteries of each battalion were deployed to previously unused field tactical sites. At these sites, they assumed responsibility for coverage of all assigned targets. During the transition from the peacetime to full combat status, coverage was maintained on the highest priority targets that were assigned to the peacetime CAS batteries.

Once all firing batteries were at their field sites, the firing elements of the battalions were deployed by platoons, which were then separated from each other geographically to reduce vulnerability. The platoons then moved to new firing positions on a random schedule to increase survivability.

Launcher and support equipment

The M790 erector launcher (EL) was a modified low-boy flat-bed trailer towed by a Ford M757 5-ton tractor. [23] The erection booms used a 3,000 psi pneumatic over hydraulic system that could erect the five ton missile from horizontal to vertical in nine seconds. Due to the overall missile length and for security, the warhead was not mated during travel. It was stored in a carrier and mated using a hand-pumped davit after the launcher was emplaced. The EL was pulled by a Ford M757 tractor for U.S. Army units and by a Magirus-Deutz Jupiter 6×6 for German Air Force units.

The PTS and PS were mounted on a Ford M656 truck for U.S. Army units and a Magirus-Deutz or MAN SE for German Air Force units. [24] Launch activation was performed from a remote fire box that could be deployed locally or mounted in the battery control central (BCC). One PTS controlled three launchers— when one launch count was complete, ten large cables were unplugged from the PTS and the PTS was moved up and connected to the next launcher.

Further improvements

Missile and power station upgrades in 1974 provided easier access to missile components, reduce maintenance and improved reliability. A new digital guidance and control computer combined the functions of the analog control computer and the analog guidance computer into one package. The mean time to repair decreased from 8.7 hours to 3.8 hours and the mean time between failures increased from 32 hours to 65 hours.

More modifications in 1976 greatly reduced the launch time. The sequential launch adapter (SLA) was an automatic switching device mounted in a 10-ton trailer that allowed the PTS to remain connected to all three launchers allowing all three missiles to stay hot. The automatic reference system (ARS) eliminated the theodolites previously used to lay and orient the missile. It included a north-seeking gyro and a laser link to the ST-120 that more quickly oriented the missile.

After the Pershing II explosion in 1985, the Pershing 1a launchers of the German Air Force were retrofitted with ballistic shields.

In 1987 a joint Army/Department of Energy study concluded that it was technically and financially feasible to replace the W50 warhead carried by Pershing 1a with the W85 warhead developed for Pershing II. However, with the signing of the INF Treaty, development on the conversion was terminated. [25]

Pershing II

The Pershing II Weapon System was a solid-fueled two-stage ballistic missile designed and built by Martin Marietta to replace the Pershing 1a Field Artillery Missile System as the United States Army's primary nuclear-capable theater-level weapon. [lower-alpha 1] The U.S. Army replaced the Pershing 1a with the Pershing II in 1983 while the German Air Force retained Pershing 1a until all Pershings were eliminated in 1991.

Operators

Flag of the United States (23px).png  United States: United States Army

Flag of Germany.svg West Germany: German Air Force

Elimination

The Pershing systems were eliminated after the ratification of the Intermediate-Range Nuclear Forces Treaty on 27 May 1988. [26] The missiles began to be withdrawn in October 1988 and the last of the missiles were destroyed by the static burn of their motors and subsequently crushed in May 1991 at the Longhorn Army Ammunition Plant near Caddo Lake, Texas. [27] Although not covered by the treaty, West Germany agreed unilaterally to the removal of the Pershing 1a missiles from its inventory in 1991, and the missiles were destroyed in the United States.

Notes

  1. 1 2 3 The original system was simply named Pershing but was renamed Pershing 1 in 1965 when the Pershing 1a was introduced. Military and other documentation is inconsistent in the use of Arabic and Roman numerals and in capitalization, resulting in the use of I, 1, 1a, 1A, 2, II and the like. MGM-31A is the designation of the missile only; the same missile was used in Pershing 1 and Pershing 1a.

Related Research Articles

<span class="mw-page-title-main">MIM-104 Patriot</span> American surface-to-air missile system

The MIM-104 Patriot is a surface-to-air missile (SAM) system, the primary such system used by the United States Army and several allied states. It is manufactured by the U.S. defense contractor Raytheon and derives its name from the radar component of the weapon system. The AN/MPQ-53 at the heart of the system is known as the "Phased Array Tracking Radar to Intercept on Target," which is a backronym for "Patriot". In 1984, the Patriot system began to replace the Nike Hercules system as the U.S. Army's primary high to medium air defense (HIMAD) system and the MIM-23 Hawk system as the U.S. Army's medium tactical air defense system. In addition to these roles, Patriot has been given a function in the U.S. Army's anti-ballistic missile (ABM) system. As of 2016, the system is expected to stay fielded until at least 2040.

<span class="mw-page-title-main">M142 HIMARS</span> American artillery rocket system

The M142 High Mobility Artillery Rocket System (HIMARS) is a light multiple rocket launcher developed in the late 1990s for the United States Army and mounted on a standard U.S. Army Family of Medium Tactical Vehicles (FMTV) M1140 truck frame.

<span class="mw-page-title-main">Nuclear artillery</span> Type of tactical nuclear weaponry designed to be fired from ground level in a battlefield

Nuclear artillery is a subset of limited-yield tactical nuclear weapons, in particular those weapons that are launched from the ground at battlefield targets. Nuclear artillery is commonly associated with shells delivered by a cannon, but in a technical sense short-range artillery rockets or tactical ballistic missiles are also included.

<span class="mw-page-title-main">PGM-11 Redstone</span> American short-range ballistic missile

The PGM-11 Redstone was the first large American ballistic missile. A short-range ballistic missile (SRBM), it was in active service with the United States Army in West Germany from June 1958 to June 1964 as part of NATO's Cold War defense of Western Europe. It was the first US missile to carry a live nuclear warhead, in the 1958 Pacific Ocean weapons test, Hardtack Teak.

<span class="mw-page-title-main">M270 Multiple Launch Rocket System</span> American armored self-propelled artillery

The M270 Multiple Launch Rocket System is an American armored self-propelled multiple launch rocket system.

<span class="mw-page-title-main">MGR-1 Honest John</span> Nuclear-capable surface-to-surface rocket

The MGR-1 Honest John rocket was the first nuclear-capable surface-to-surface rocket in the United States arsenal. Originally designated Artillery Rocket XM31, the first unit was tested on 29 June 1951, with the first production rounds delivered in January 1953. Its designation was changed to M31 in September 1953. The first Army units received their rockets by year's end and Honest John battalions were deployed in Europe in early 1954. Alternatively, the rocket was capable of carrying an ordinary high-explosive warhead weighing 1,500 pounds (680 kg).

<span class="mw-page-title-main">MGM-5 Corporal</span> Tactical ballistic missile

The MGM-5 Corporal missile was a nuclear-armed tactical surface-to-surface missile. It was the first guided weapon authorized by the United States to carry a nuclear warhead. A guided tactical ballistic missile, the Corporal could deliver either a nuclear fission, high-explosive, fragmentation or chemical warhead up to a range of 75 nautical miles (139 km).

<span class="mw-page-title-main">MGM-52 Lance</span> 1970s short-range ballistic missile of American origin

The MGM-52 Lance was a mobile field artillery tactical surface-to-surface missile system used to provide both nuclear and conventional fire support to the United States Army. The missile's warhead was developed at Lawrence Livermore National Laboratory. It was replaced by MGM-140 ATACMS, which was initially intended to likewise have a nuclear capability during the Cold War.

<span class="mw-page-title-main">MGM-18 Lacrosse</span> US nuclear-capable tactical missile

The MGM-18 Lacrosse was a short-ranged tactical weapon intended for close support of ground troops. Its first flight test was in 1954 and was deployed by the United States Army beginning in 1959, despite being still in the development stage. The program's many technical hurdles proved too difficult to overcome and the missile was withdrawn from field service by 1964.

This Pershing missile bibliography is a list of works related to the Pershing 1 and Pershing 1a Field Artillery Missile Systems and the Pershing II Weapon System.

<span class="mw-page-title-main">56th Artillery Command</span> Force Field Artillery Headquarters for U.S. Army Europe and Africa

The 56th Artillery Command is a two-star command of the United States Army that serves as the Force Field Artillery Headquarters for U.S. Army Europe and Africa, with a mission to synchronize, integrate, and control fires and effects in support of the theater land component. The unit was originally formed on September 14, 1942, as the 56th Coast Artillery Brigade and has been reorganized and redesignated several times until its inactivation on June 30, 1991, following the reunification of Germany and the end of the Cold War.

<span class="mw-page-title-main">41st Field Artillery Regiment</span> Military unit

The 41st Field Artillery Regiment is a field artillery regiment of the United States Army.

<span class="mw-page-title-main">3rd Missiles Brigade "Aquileia"</span> Military unit

The 3rd Missiles Brigade "Aquileia" was an artillery brigade of the Italian Army active between 1959 and 1991. The brigade was stationed in North-Eastern Italy and armed with missile and artillery systems capable of firing tactical nuclear weapons as part of Italy's participation in NATOs nuclear sharing programme. During peacetime the brigade fell under command of the Italian V Army Corps, but during wartime the brigade would have been subordinate to NATOs Allied Land Forces Southern Europe (LANDSOUTH) command in Verona. After the end of the Cold War the brigade was disbanded and its weapon systems retired.

<span class="mw-page-title-main">Pershing missile launches</span>

From 1960 to 1988 there were Pershing missile launches for testing from various sites in the US. The systems included the Pershing 1 Field Artillery Missile System, the Pershing 1a Field Artillery Missile System and the Pershing II Weapon System. Initial launches were from what is now the Eastern Range at Cape Canaveral, Florida using Launch Complex 30A using the dismounted erector launcher. Later launches were from the full transporter erector launcher (TEL). Further launches were conducted at White Sands Missile Range (WSMR) using tactical equipment. The Pershing 1 and 1a had a range of 740 kilometres (460 mi), thus launches were from various subinstallations into WSMR. The two-stage Pershing II had a range of 1,770 kilometres (1,100 mi), thus launches at WSMR used a single-stage missile with two-stage launches at Cape Canaveral.

<span class="mw-page-title-main">Missile Wing 1</span> Military unit

Missile Wing 1 was a unit of the German Air Force.

<span class="mw-page-title-main">Missile Wing 2</span> Military unit

Missile Wing 2 was a unit of the German Air Force. It was activated on 1 January 1965 in Lechfeld with two subordinate units: Missile Group 21 and Missile Group 22.

<span class="mw-page-title-main">Pershing II</span> American ballistic missile

The Pershing II Weapon System was a solid-fueled two-stage medium-range ballistic missile designed and built by Martin Marietta to replace the Pershing 1a Field Artillery Missile System as the United States Army's primary nuclear-capable theater-level weapon. The U.S. Army replaced the Pershing 1a with the Pershing II Weapon System in 1983, while the German Air Force retained Pershing 1a until all Pershings were eliminated in 1991. The U.S. Army Missile Command (MICOM) managed the development and improvements, while the Field Artillery Branch deployed the systems and developed tactical doctrine.

There are a number of Pershing missile displays of inert missiles in the U.S, Germany and Russia. The Pershing systems were eliminated after the ratification of the Intermediate-Range Nuclear Forces Treaty on 27 May 1988. The treaty allowed for a total of fifteen Pershing II and GLCM missiles for display and seven Pershing IIs were retained. A number of Pershing 1 and Pershing 1a missiles are also on display.

There are a number of Pershing missile models of the Pershing 1 and Pershing 1a Field Artillery Missile Systems and of the Pershing II Weapon System.

<span class="mw-page-title-main">Pershing Operational Test Unit</span>

The Pershing Operational Test Unit (POTU) was the U.S. Army agency responsible for the operational testing of the Pershing 1 Field Artillery Missile System, the Pershing 1a Field Artillery Missile System and the Pershing II Weapon System. Created in 1965, POTU was assigned to United States Army Europe and located in Heidelberg, Germany. Personnel consisted of one lieutenant colonel, two majors, one captain, two warrant officers and four non-commissioned officers.

References

  1. 1 2 3 Pershing 1a System Description (PDF). Martin Marietta. June 1974. OR 13,149.
  2. 1 2 3 Harwood, William B. (1993). Raise Heaven and Earth . Simon & Schuster. ISBN   0-67-174998-6.
  3. "Charlie's Hurricane". Armed Forces. Time . 6 June 1956. Archived from the original on 2 February 2008.
  4. Wade, Mark. "Cape Canaveral LC30". Encyclopedia Astronautica. Archived from the original on 28 December 2016.
  5. President Dwight D Eisenhower Inspects U.S. Army Missile During his Visit at Cape Canaveral, Florida. Universal International News. 11 February 1960.
  6. Pershing: The Man, the Missile, the Mission (PDF). The Martin Company. 1960. WSS 009.
  7. President Eisenhower and Military Officers Review Two Hundred pieces of Weaponry at Fort Benning in Georgia, United States. Universal International News. 5 May 1960.
  8. President John F. Kennedy's Inauguration Parade. Washington, D.C. 20 January 1961. Event occurs at 5:10. Archived from the original on 11 December 2021.
  9. "Pershing Missile Passes in Review; President John F. Kennedy's Inauguration Parade" (JPG). Technology Review. 20 January 1961.
  10. Loengard, John (1 October 1961). Photo 53381082: Texas, United States - October 1961: President John F. Kennedy with General Paul Adams, during tour of a Pershing missile at Fort Bragg. Life.
  11. "JFK's Visit to White Sands" (PDF). White Sands Missile Range. United States Army.
  12. Lemmer, George F. (January 1966). Strengthening USAF General Purpose Forces, 1961-1964 (PDF). USAF Historical Division Liaison Office. Archived (PDF) from the original on 9 October 2022.
  13. McKenney, Janice E. (2007). "Pershing Missile". Organizational History of Field Artillery 1775 - 2003 (PDF). Washington, D.C.: U.S. Army Center of Military History. pp. 230–234. Archived (PDF) from the original on 9 October 2022.
  14. Tupper, Fred A.; Hausburg, E. E. (January 1963). "Field Artillery's Newest Missile" (PDF). Artillery Trends: 36–40. Archived (PDF) from the original on 9 October 2022.
  15. "Pershing Rockets for Europe" (PDF). Interavia. July 1961. Archived (PDF) from the original on 9 October 2022.
  16. Mentzer Jr., William R. (1998). "Test and Evaluation of Land-Mobile Missile Systems" (PDF). Johns Hopkins APL Technical Digest. Johns Hopkins University. Archived (PDF) from the original on 9 October 2022.
  17. Lyman, Donald R. (May 1977). "POTU" (PDF). Field Artillery Journal: 15–17. Archived (PDF) from the original on 9 October 2022.
  18. Parsch, Andreas (17 November 2002). "Martin TM-76/MGM-13/CGM-13 Mace". Directory of U.S. Military Rockets and Missiles.
  19. Moore Jr., Alan L. (April 1969). "A New Look of Pershing" (PDF). The Field Artilleryman: 49–57. Archived (PDF) from the original on 29 November 2014.
  20. "Instructional Department Notes: Pershing" (PDF). The Field Artilleryman: 76–78. August 1971. Archived (PDF) from the original on 29 November 2014.
  21. "Pershing System Modular Improvement" (PDF). Field Artillery Journal: 30. May 1976. Archived (PDF) from the original on 9 October 2022.
  22. Pershing II Firing Battery (PDF). United States Army. March 1985. FM 6-11.
  23. Equipment Data Sheets for TACOM Combat & Tactical Equipment (PDF). United States Army. June 1985. pp. 4–286–4–287. TM 43-0001-31. Archived (PDF) from the original on 9 October 2022.
  24. Equipment Data Sheets for TACOM Combat & Tactical Equipment (PDF). United States Army. June 1985. pp. 4–202–4–203. TM 43-0001-31. Archived (PDF) from the original on 5 July 2014.
  25. Nuclear Weapons Surety - Annual Report to the President (PDF) (Report). US Department of Defense and US Department of Energy. 1987. p. 21. Archived (PDF) from the original on 21 October 2014. Retrieved 26 July 2022.
  26. "The Pershing Weapon System and Its Elimination". United States Army.
  27. "Pershing I-A missile destroyed".
  28. Portmann, H.H. Xlibris, 2024. https://books.google.com/books?id=wxPzEAAAQBAJ