AIM-54 Phoenix

Last updated
AIM-54 Phoenix
AIM-54A (left) on F-14 at NAS Pax 1984.JPEG
AIM-54A on an F-14 at NAS Patuxent River, 1984
TypeLong range BVR air-to-air missile
Place of originUnited States
Service history
In service1974–present
Used by United States Navy (former)
Iranian Air Force
Production history
Designer Hughes Aircraft Company
Designed1960–1966
Manufacturer
Unit cost US$ 477,131 (1974 FY)
Produced1966
Specifications
Mass
  • AIM-54A/B - 976 lb (443 kg)
  • AIM-54C – 1,015 lb (460 kg)
Length12 ft 9+12 in (3.9 m)
Diameter15 in (380 mm)
Wingspan2 ft 11+12 in (0.9 m)

Warhead
  • AIM-54A/B - HE continuous rod
  • AIM-54C – HE Mk 82; WDU‐29/B continuous rod
Warhead weight133 lb (60.33 kg)
Detonation
mechanism
Proximity fuze

Engine Solid propellant rocket motor
Operational
range
  • AIM-54A/B - 72.9 nmi (135.0 km; 83.9 mi)
  • AIM-54C – 99.4 nmi (184.1 km; 114.4 mi)
Flight ceiling103,500 ft (31.5 km)
Maximum speed
  • AIM-54A/B - Mach 4.3 (1,460 m/s; 4,800 ft/s)
  • AIM-54C – Mach 5 (1,700 m/s; 5,600 ft/s)
Guidance
system
Semi-active radar homing and terminal phase active radar homing
Launch
platform
Grumman F-14 Tomcat
References Janes [1]

The AIM-54 Phoenix is an American radar-guided, long-range air-to-air missile (AAM), carried in clusters of up to six missiles on the Grumman F-14 Tomcat, its only operational launch platform.

Contents

The Phoenix was the United States' only long-range air-to-air missile. The combination of Phoenix missile and the Tomcat's AN/AWG-9 guidance radar meant that it was the first aerial weapons system that could simultaneously engage multiple targets. Due to its active radar tracking, the brevity code "Fox Three" was used when firing the AIM-54. The act of the missile achieving a radar lock with its own radar is known under brevity as 'Going Pitbull'.

Both the missile and the aircraft were used by Iran and the United States Navy. In US service both are now retired, the AIM-54 Phoenix in 2004 and the F-14 in 2006. They were replaced by the shorter-range AIM-120 AMRAAM, employed on the F/A-18 Hornet and F/A-18E/F Super Hornet—in its AIM-120D version, the latest version of the AMRAAM just matches the Phoenix's maximum range. [2]

The AIM-54 has been used in 62 air-to-air strikes, all by Iran during the eight-year Iran–Iraq War. [3] [4] Following the retirement of the F-14 by the U.S. Navy, the weapon's only current operator is the Islamic Republic of Iran Air Force.

Development

Background

Since 1951, the Navy faced the initial threat from the Tupolev Tu-4K 'Bull' carrying [5] anti-ship missiles or nuclear bombs.

Eventually, during the height of the Cold War, the threat would have expanded into regimental-size raids of Tu-16 Badger and Tu-22M Backfire bombers equipped with low-flying, long-range, high-speed, nuclear-armed cruise missiles and considerable electronic countermeasures (ECM) of various types. This combination was considered capable of saturating fleet defenses and threatening carrier groups.

The Navy would require a long-range, long-endurance interceptor aircraft to defend carrier battle groups against this threat. The proposed Douglas F6D Missileer was intended to fulfill this mission and oppose the attack as far as possible from the fleet it was defending. The weapon needed for interceptor aircraft, the Bendix AAM-N-10 Eagle, was to be an air-to-air missile of unprecedented range when compared to contemporary AIM-7 Sparrow missiles. It would work together with Westinghouse AN/APQ-81 radar. The Missileer project was cancelled in December 1960.

AIM-54

An AIM-54A launched from the NA-3A-testbed in 1966 AIM-54A first test A-3A NAN11-66.jpg
An AIM-54A launched from the NA-3A-testbed in 1966

In the early 1960s, the U.S. Navy made the next interceptor attempt with the F-111B, and they needed a new missile design. At the same time, the USAF canceled the projects for their land-based high-speed interceptor aircraft, the North American XF-108 Rapier and the Lockheed YF-12, and left the capable AIM-47 Falcon missile at a quite advanced stage of development, but with no effective launch platform.

The AIM-54 Phoenix, developed for the F-111B fleet air defense fighter, had an airframe with four cruciform fins that was a scaled-up version of the AIM-47. One characteristic of the Missileer ancestry was that the radar sent it mid-course corrections, which allowed the fire control system to "loft" the missile up over the target into thinner air where it had better range.

The F-111B was canceled in 1968. Its weapons system, the AIM-54 working with the AWG-9 radar, migrated to the new U.S. Navy fighter project, the VFX, which would later become the F-14 Tomcat. [6]

The AIM-54 Phoenix was also considered by the Royal Air Force to be used on Avro Vulcan bomber planes as part of an air defence aircraft. This missileer conversion would have used 12 missiles onboard and an extensive modification to the Vulcan's radar. [7]

In 1977, development of a significantly improved Phoenix version, the AIM-54C, was developed to better counter projected threats from tactical anti-naval aircraft and cruise missiles, and its final upgrade included a re-programmable memory capability to keep pace with emerging ECM. [8]

Usage in comparison to other weapon systems

The AIM-54/AWG-9 combination had multiple track (up to 24 targets) and multiple launch (up to six Phoenixes can be launched nearly simultaneously) capability, regardless of weather conditions or heavy enemy electronic warfare, known as jamming. The large 1,000 lb (500 kg) missile is equipped with a conventional warhead.

The AIM-54 is designed for ejection launch, where a pyrotechnic charge forcefully jettisons it from either a LAU-93 or a LAU-132 launcher before its solid propellant rocket motor ignites. [9]

On the F-14, four missiles can be carried under the fuselage tunnel attached to special aerodynamic pallets, plus two under glove stations. A full load of six Phoenix missiles and the unique launch rails weighs in at over 8,000 lb (3,600 kg), about twice the weight of Sparrows, putting it above the allowable bringback load (which also would include enough fuel for go-around attempts). [10] As such, carrying six Phoenix missiles would necessitate the jettison of at least some of the Phoenix missiles if they were not used. The most common air superiority payload was a mix of two Phoenix, three Sparrow, and two Sidewinder missiles.[ citation needed ]

Most other US aircraft relied on the smaller, semi-active medium-range AIM-7 Sparrow. Semi-active guidance meant the aircraft no longer had a search capability while supporting the launched Sparrow, reducing situational awareness.

The Tomcat's radar could track up to 24 targets in track-while-scan mode, with the AWG-9 selecting up to six potential targets for the missiles. The pilot or radar intercept officer (RIO) could then launch the Phoenix missiles once parameters were met. The large tactical information display (TID) in the RIO's cockpit gave information to the aircrew (the pilot had the ability to monitor the RIO's display) and the radar could continually search and track multiple targets after Phoenix missiles were launched, thereby maintaining situational awareness of the battlespace.

The Link 4 datalink allowed US Navy Tomcats to share information with the E-2C Hawkeye AEW aircraft. During Desert Shield in 1990, the Link 4A was introduced; this allowed the Tomcats to have a fighter-to-fighter datalink capability, further enhancing overall situational awareness. The F-14D entered service with JTIDS that brought the even better Link 16 datalink "picture" to the cockpit.

Active guidance

AIM-54 Phoenix seconds after launch (1989) F-14A VF-1 launching AIM-54 Phoenix.JPEG
AIM-54 Phoenix seconds after launch (1989)

The Phoenix has several guidance modes and achieves its longest range by using mid-course updates from the F-14A/B AWG-9 radar (APG-71 radar in the F-14D) as it climbs to cruise between 80,000 ft (24,000 m) and 100,000 ft (30,000 m) at close to Mach 5. The Phoenix uses this high altitude to maximize its range by reducing atmospheric drag. At around 11 miles (18 km) from the target, the missile activates its own radar to provide terminal guidance. [11] Minimum engagement range for the Phoenix is around 2 nmi (3.7 km); at this range active homing would initiate upon launch. [11] If the AWG-9 radar lost radar lock on a target before the missile had activated its own radar, the missile proceeded on a ballistic trajectory with no further guidance, known as 'going dumb'.

Service history

U.S. combat experience

An AIM-54 hitting a QF-4B target drone, 1983. AIM-54 Phoenix destroys QF-4 drone 1983.jpeg
An AIM-54 hitting a QF-4B target drone, 1983.
An AIM-54 Phoenix being attached to an F-14 wing pylon before the forward fins were installed (2003). AIM-54 Phoenix cropped.jpg
An AIM-54 Phoenix being attached to an F-14 wing pylon before the forward fins were installed (2003).

The AIM-54 Phoenix was retired from USN service on September 30, 2004. F-14 Tomcats were retired on September 22, 2006. They were replaced by shorter-range AIM-120 AMRAAMs, employed on the F/A-18E/F Super Hornet.

Despite the much-vaunted capabilities, the Phoenix was rarely used in combat, with only two confirmed launches and no confirmed targets destroyed in US Navy service. The USAF F-15 Eagle had responsibility for overland combat air patrol duties in Operation Desert Storm in 1991, primarily because of the onboard F-15 IFF capabilities. The Tomcat did not have the requisite IFF capability mandated by the JFACC to satisfy the rules of engagement to utilize the Phoenix capability at beyond visual range. The AIM-54 was not adopted by any foreign nation besides Iran, or any other US armed service, and was not used on any aircraft other than the F-14.

Iranian combat experience

Iranian F-14 Tomcats armed with multiple types of air-to-air missiles, including AIM-54 Phoenixes, in 1986. Irani F-14 Tomcats carrying AIM-54 Phoenixs.jpg
Iranian F-14 Tomcats armed with multiple types of air-to-air missiles, including AIM-54 Phoenixes, in 1986.

On January 7, 1974, as part of Project Persian King, the Imperial Iranian Air Force placed an order for 424 AIM-54As, later increasing it by 290 missiles that June. [4] Of the initial order, 274 missiles and 10 training rounds were delivered for US$150 million, [15] until the 1979 Revolution ended deliveries and left the remaining 150 missiles embargoed and the additional order of 290 cancelled.

According to Tom Cooper and Farzad Bishop, during the Iran–Iraq War AIM-54s fired by IRIAF Tomcats achieved 78 victories against Iraqi MiG-21s, MiG-23s, MiG-25s, Tu-22s, Su-20/22s, Mirage F 1s, Super Étendards, and even two AM-39 Exocets and a C-601. This includes two occasions where one AIM-54 was responsible for the downing of two Iraqi aircraft, as well as an incident on January 7, 1981, where a Phoenix fired at a four-ship of MiG-23s downed three and damaged the fourth. [4]

The US refused to supply spare parts and maintenance after the 1979 Revolution, except for a brief period during the Iran–Contra affair. According to Cooper, the Islamic Republic of Iran Air Force kept its F-14 fighters and AIM-54 missiles in regular use during the entire Iran–Iraq War, though periodic lack of spares grounded large parts of the fleet at times. During late 1987, the stock of AIM-54 missiles was at its lowest, with fewer than 50 operational missiles available. The missiles needed fresh thermal batteries that could only be purchased from the US. Iran found a clandestine buyer that supplied it with batteries, which cost up to US$10,000 each. Iran received spares and parts for both the F-14s and AIM-54s from various sources during the Iran–Iraq War, and has received more spares after the conflict. Iran started a program to build spares for the planes and missiles, and although there are claims that it no longer relies on outside sources to keep its F-14s and AIM-54s operational, there is evidence that Iran continues to procure parts clandestinely. [16]

Both the F-14 Tomcat and the AIM-54 Phoenix missile continue in the service of the Islamic Republic of Iran Air Force. Iran claimed to be working on building an equivalent missile[ citation needed ] and in 2013 unveiled the Fakour-90, an upgraded and reverse-engineered version of the Phoenix. [17]

Variants

An AIM-54A "Phoenix" missile on display at Grumman Memorial Park in New York State Phoenix missile at Grumman Memorial Park.jpg
An AIM-54A "Phoenix" missile on display at Grumman Memorial Park in New York State
AIM-54A
Original model that became operational with the U.S. Navy in about 1974, and it was also exported to Iran before the Iran hostage crisis beginning in 1979.
AIM-54B
Also known as the 'Dry' missile. A version with simplified construction and no coolant conditioning. Did not enter series production. Developmental work started in January 1972. 7 X-AIM-54B missiles were created for testing, 6 of them by modifying pilot production IVE/PIP rounds. After two successful test firings, the 'Dry' missile effort was cancelled for being "not cost effective". [18]
AIM-54C
The only improved model that was ever produced. It used digital electronics in the place of the analog electronics of the AIM-54A. This model had better abilities to shoot down low and high-altitude antiship missiles. It was designed for greater service life, reliability, and utilized less parts. It also included a built in self-test (BIST/BIT) and missile on-aircraft test capability. [9] This model took over from the AIM-54A beginning in 1986.
AIM-54 ECCM/sealed round
More capabilities in electronic counter-countermeasures. It did not require coolant during flight. The Missile was deployed from 1988 onwards. Because the AIM-54 ECCM/Sealed received no coolant, F-14s carrying this version of the missile could not exceed a specified airspeed.

There were also test, evaluation, ground training, and captive air training versions of the missile; designated ATM-54, AEM-54, DATM-54A, and CATM-54. The flight versions had A and C versions. The DATM-54 was not made in a C version as there was no change in the ground handling characteristics.

Sea Phoenix
A 1970s proposal for a ship launched version of the Phoenix as an alternative/replacement for the Sea Sparrow point defense system. [19] It would also have provided a medium-range SAM capability for smaller and/or non-Aegis equipped vessels (such as the CVV). The Sea Phoenix system would have included a modified shipborne version of the AN/AWG-9 radar. Hughes Aircraft touted the fact that 27 out of 29 major elements of the standard (airborne) AN/AWG-9 could be used in the shipborne version with little modification. Each system would have consisted of one AWG-9 radar, with associated controls and displays, and a fixed 12-cell launcher for the Phoenix missiles. In the case of an aircraft carrier, for example, at least three systems would have been fitted in order to give overlapping coverage throughout the full 360°. [20] [ page needed ] Both land and ship based tests of modified Phoenix (AIM-54A) missiles and a containerised AWG-9 (originally the 14th example off the AN/AWG-9 production line) were successfully carried out from 1974 onwards. [21]
AIM-54B
A land based version for the USMC was also proposed. It has been suggested that the AIM-54B would have been used in operational Sea Phoenix systems, although that version had been cancelled by the second half of the 1970s. Ultimately, a mix of budgetary and political issues meant that, despite being technically and operationally attractive, further development of the Sea Phoenix did not proceed.
Fakour 90
In February 2013 Iran reportedly tested an indigenous long-range air-to-air missile.[ citation needed ] In September 2013 it displayed the Fakour-90 on a military parade. It looked almost identical to the AIM-54 Phoenix. [22] In July 2018 as reported by Jane's, Iran started mass production of the Fakour-90. [23]

Operators

Map with current AIM-54 Phoenix operators in blue and former operators in red AIM-54 operators.png
Map with current AIM-54 Phoenix operators in blue and former operators in red

Current operators

Former operators

Characteristics

A technical drawing of AIM-54C AIM-54C 350px.png
A technical drawing of AIM-54C

The following is a list of AIM-54 Phoenix specifications: [24]

See also

Related lists

Related Research Articles

<span class="mw-page-title-main">AIM-7 Sparrow</span> Medium-range, semi-active radar homing air-to-air missile

The AIM-7 Sparrow is an American medium-range semi-active radar homing air-to-air missile operated by the United States Air Force, United States Navy, United States Marine Corps, and various other air forces and navies. Sparrow and its derivatives were the West's principal beyond visual range (BVR) air-to-air missile from the late 1950s until the 1990s. It remains in service, although it is being phased out in aviation applications in favor of the more advanced AIM-120 AMRAAM.

The AIM-120 Advanced Medium-Range Air-to-Air Missile(AMRAAM) (pronounced AM-ram /æmɹæm/), is an American beyond-visual-range air-to-air missile capable of all-weather day-and-night operations. It uses active transmit-receive radar guidance instead of semi-active receive-only radar guidance. It is a fire-and-forget weapon, unlike the previous generation Sparrow missiles which required full guidance from the firing aircraft. When an AMRAAM missile is launched, NATO pilots use the brevity code "Fox Three".

<span class="mw-page-title-main">Grumman F-14 Tomcat</span> Carrier-based air superiority fighter aircraft family

The Grumman F-14 Tomcat is an American carrier-capable supersonic, twin-engine, two-seat, twin-tail, all-weather-capable variable-sweep wing fighter aircraft. The Tomcat was developed for the United States Navy's Naval Fighter Experimental (VFX) program after the collapse of the General Dynamics-Grumman F-111B project. A large and well-equipped fighter, the F-14 was the first of the American Teen Series fighters, which were designed incorporating air combat experience against MiG fighters during the Vietnam War.

<span class="mw-page-title-main">Air-to-air missile</span> Missile fired from the air at airborne targets

An air-to-air missile (AAM) is a missile fired from an aircraft for the purpose of destroying another aircraft. AAMs are typically powered by one or more rocket motors, usually solid fueled but sometimes liquid fueled. Ramjet engines, as used on the Meteor, are emerging as propulsion that will enable future medium- to long-range missiles to maintain higher average speed across their engagement envelope.

<span class="mw-page-title-main">RIM-7 Sea Sparrow</span> US ship-borne short-range air defence missile system

The RIM-7 Sea Sparrow is a U.S. ship-borne short-range anti-aircraft and anti-missile weapon system, primarily intended for defense against anti-ship missiles. The system was developed in the early 1960s from the AIM-7 Sparrow air-to-air missile as a lightweight "point-defense" weapon that could be retrofitted to existing ships as quickly as possible, often in place of existing gun-based anti-aircraft weapons. In this incarnation, it was a very simple system guided by a manually aimed radar illuminator.

<span class="mw-page-title-main">Skyflash</span> Medium-range air-to-air missile

The Skyflash, or Sky Flash in marketing material, was a medium-range semi-active radar homing air-to-air missile derived from the US AIM-7 Sparrow missile and carried by Royal Air Force McDonnell Douglas F-4 Phantoms and Tornado F3s, Italian Aeronautica Militare and Royal Saudi Air Force Tornados and Swedish Flygvapnet Saab Viggens.

<span class="mw-page-title-main">Douglas F6D Missileer</span> Proposed US Navy fighter jet

The Douglas F6D Missileer was a proposed carrier-based fleet defense fighter designed by Douglas Aircraft Company in response to a 1959 United States Navy requirement. It was designed to be able to loiter for extended periods at a relatively long distance from the Navy's aircraft carriers, engaging hostile aircraft 100 miles (160 km) away with its powerful radar and long-range missiles. Since the enemy would be fired on long before they reached visual range, the aircraft had little dogfighting capability and was strictly subsonic. When doubts were expressed about the Missileer's ability to defend itself after firing its missiles, the value of the project was questioned, leading to its cancellation. Some of the Missileer's systems, primarily the engines, radar, and missiles, continued development in spite of the cancellation, eventually emerging on the ill-fated General Dynamics–Grumman F-111B and successful Grumman F-14 Tomcat years later.

<span class="mw-page-title-main">VFA-213</span> Military unit

Strike Fighter Squadron 213 (VFA-213) Blacklions is an aviation unit of the United States Navy based at Naval Air Station Oceana, Virginia. It was established in 1955 and is currently equipped with the F/A-18F Super Hornet. The squadron is assigned to Carrier Air Wing Eight and uses the radio callsign Lion.

A beyond-visual-range missile is an air-to-air missile that is capable of engaging at ranges of 20 nmi (37 km) or beyond. This range has been achieved using dual pulse rocket motors or booster rocket motor and ramjet sustainer motor.

<span class="mw-page-title-main">MIM-23 Hawk</span> American surface-to-air missile family

The Raytheon MIM-23 HAWK is an American medium-range surface-to-air missile. It was designed to be a much more mobile counterpart to the MIM-14 Nike Hercules, trading off range and altitude capability for a much smaller size and weight. Its low-level performance was greatly improved over Nike through the adoption of new radars and a continuous wave semi-active radar homing guidance system. It entered service with the US Army in 1959.

<span class="mw-page-title-main">AIM-95 Agile</span>

The AIM-95 Agile was an air-to-air missile developed by the United States. It was developed by the US Navy to equip the F-14 Tomcat, replacing the AIM-9 Sidewinder. Around the same time, the US Air Force was designing the AIM-82 to equip their F-15 Eagle, and later dropped their efforts to join the Agile program. In the end, newer versions of Sidewinder would close the performance gap so much that the Agile program was canceled.

<span class="mw-page-title-main">AN/AWG-9</span> X band pulse-Doppler military aircraft radar

The AN/AWG-9 and AN/APG-71 radars are all-weather, multi-mode X band pulse-Doppler radar systems used in the F-14 Tomcat, and also tested on TA-3B. It is a long-range air-to-air system capable of guiding several AIM-54 Phoenix or AIM-120 AMRAAM missiles simultaneously, using its track while scan mode. The AWG-9 utilizes an analog computer while the APG-71 is an upgraded variant utilizing a digital computer. Both the AWG-9 and APG-71 were designed and manufactured by Hughes Aircraft Company's Radar Systems Group in Los Angeles; contractor support was later assumed by Raytheon. The AWG-9 was originally created for the canceled Navy F-111B program.

VFAX for Naval Fighter Attack Experimental was actually two specifications for two US Navy fighter projects. The first was for a low cost lightweight complement for the General Dynamics–Grumman F-111B which could replace the McDonnell F-4 Phantom II for air superiority, escort, and ground attack missions in the early 1960s. This role was dropped in favor of the VFX aircraft, which emerged as the F-14 Tomcat. The second VFAX evolved when the VFX proved too costly to replace all existing USN fighters and attack aircraft, and the Navy was invited to take part in the USAFs Lightweight Fighter Program (LWF). The Navy chose the YF-17, the loser of the LWF contest as its Navy Air Combat Fighter, as it was inherently more suitable to naval operations than the winning General Dynamics F-16 Fighting Falcon; it was redesigned to become the McDonnell Douglas F/A-18 Hornet.

The Grumman F-14 Tomcat has served with the United States Navy and the Imperial Iranian Air Force, then the Islamic Republic of Iran Air Force after 1979. It operated aboard U.S. aircraft carriers from 1974 to 2006 and remains in service with Iran. In-depth knowledge of its service with Iran is relatively limited.

VX-4, Air Test and Evaluation Squadron Four,, commonly referred to by its nickname of The Evaluators, was a United States Navy air test and evaluation squadron based at Naval Air Station Point Mugu, California. Their tail code was XF, and they flew the McDonnell Douglas F-4 Phantom, Grumman F-14 Tomcat and the McDonnell Douglas F/A-18 Hornet until their disestablishment in 1994.

<span class="mw-page-title-main">General Dynamics–Grumman F-111B</span> US Navy prototype long range interceptor (1965)

The General Dynamics–Grumman F-111B is a former long-range carrier-based interceptor aircraft planned as a follow-on to the F-4 Phantom II for the United States Navy (USN).

<span class="mw-page-title-main">AN/APQ-120</span> Aircraft fire control radar

The AN/APQ-120 was an aircraft fire control radar (FCR) manufactured by Westinghouse for the McDonnell Douglas F-4E Phantom II. AN/APQ-120 has a long line of lineage, with its origin traced all the way back to Aero-13 FCR developed by the same company in the early 1950s. A total of half a dozen FCRs were tested and evaluated on the first 18 F-4s built, but they were soon replaced by later radars produced in great numbers, including AN/APQ-120.

<span class="mw-page-title-main">Operation Sultan 10</span>

Operation Sultan 10 was an operation of the Islamic Republic of Iran Air Force (IRIAF) on 29 October 1980, the beginning of the Iran–Iraq War. In this operation six F-4E Phantom IIs from IRIAF's 32nd and 33rd Squadrons took part in an attack on the Al-Hurriah Airbase near Mosul in Saddam Hussein's Iraq.

<span class="mw-page-title-main">Fakour-90</span> Beyond-visual-range air-to-air missile

The Fakour-90 is an Iranian air-to-air missile based on the AIM-54 Phoenix. It is solely deployed on Iran's F-14 Tomcats. While not confirmed for use in service, it has also been tested for usage on Iranian MiG-29, F-4 Phantom II & Su-24.

<span class="mw-page-title-main">Sedjil (air-to-air missile)</span> Air-to-air missile

Sedjil is an Iranian semi-active radar homing air-to-air missile. It is made by the Self-Sufficiency Jihad Organization of the Islamic Republic of Iran Air Force and is actually a modified version of the surface-to-air MIM-23 HAWK. The Sedjil weighs approximately 500 kg, its length is 5 meters and its diameter is about 40 cm. The effective range of the missile is approximately 90 km. Its speed is estimated to be about 4-5 mach.

References

  1. Janes (26 February 2021), "AIM-54 Phoenix" , Janes Weapons: Air Launched, Coulsdon, Surrey: Jane's Group UK Limited., retrieved 2 October 2022
  2. "New long-range missile project emerges in US budget". November 2, 2017.
  3. John Stillion. "Trends in Air-to-Air Combat: Implications for Future Air Superiority" (PDF). Center for Strategic and Budgetary Assessments (CSBA). p. 22. Archived (PDF) from the original on 2022-10-09.
  4. 1 2 3 Cooper, Tom; Bishop, Farzad. Iranian F-14 Tomcat Units in Combat, p. 85. Oxford: Osprey Publishing, 2004. ISBN   1 84176 787 5.
  5. Zaloga, S.J.; Laurier, J. (2005). V-1 Flying Bomb, 1942–52: Hitler's Infamous "Doodlebug". Osprey Publishing, Limited. ISBN   9781841767918 . Retrieved 3 October 2014.
  6. Wragg, David W. (1973). A Dictionary of Aviation (first ed.). Osprey. p. 212. ISBN   9780850451634.
  7. "The National Interest: Blog".
  8. "Raytheon AIM-54 Phoenix". designation-systems.net. Retrieved 3 October 2014.
  9. 1 2 "Raytheon AIM-54C Phoenix | Estrella Warbird Museum". www.ewarbirds.org. Retrieved 2023-12-19.
  10. Clancy, Tom (1999-02-01). Carrier. Penguin. ISBN   9781101002254.
  11. 1 2 "AIM-54" (2004). Directory of US Military Rockets and Missiles. Retrieved 28 November 2010.
  12. "Defense.gov Transcript: DoD News Briefing January 5, 1999". Archived from the original on December 8, 2015. Retrieved November 30, 2015.
  13. Parsons, Dave, George Hall and Bob Lawson. (2006). Grumman F-14 Tomcat: Bye-Bye Baby...!: Images & Reminiscences From 35 Years of Active Service. Zenith Press, p. 73. ISBN   0-7603-3981-3.
  14. Tony Holmes, "US Navy F-14 Tomcat Units of Operation Iraqi Freedom", Osprey Publishing (2005). Chapter One – OSW, pp. 16–7.
  15. "AIM-54 Phoenix Missile". U.S. Navy.
  16. Theimer, Sharon. "Iran Gets Army Gear in Pentagon Sale". Forbes. Archived from the original on 19 January 2007. Retrieved 17 January 2007.
  17. Cenciotti, David (26 September 2013). "Iranian F-14 Tomcat's 'new' indigenous air-to-air missile is actually an (improved?) AIM-54 Phoenix replica". The Aviationist. Retrieved 8 November 2015.
  18. "Budget estimates descriptive summaries", Supporting data for fiscal year 1983, Department of the Navy.
  19. "Military Watch Magazine".
  20. Weapon Systems, Jane's, 1977.
  21. Tarpgaard, PT (1976), "The Sea Phoenix—A Warship Design Study", ASNE, 88 (2): 31–44.
  22. "Farouk missile", The Avionist, Sep 26, 2013.
  23. "Janes | Latest defence and security news".
  24. "Fact File: AIM-54 Phoenix Missile". U.S. Navy. Archived from the original on 29 June 2011. Retrieved 14 July 2011.