RIM-116 Rolling Airframe Missile | |
---|---|
Type | Close-in weapon system |
Place of origin | Germany and United States |
Service history | |
In service | 1992–present |
Used by | § Operators |
Production history | |
Designer | General Dynamics (now Raytheon) and Diehl BGT Defence |
Designed | 1976 |
Manufacturer | General Dynamics (now Raytheon) and Diehl Defence |
Unit cost |
|
Produced | 1985–present |
Variants | § Variants |
Specifications | |
Mass | |
Length | 2.79 m (9 ft 2 in) (missile) |
Diameter |
|
Wingspan | 434 mm (17.1 in) |
Warhead | Blast fragmentation warhead |
Warhead weight | 11.3 kg (24 lb 15 oz) |
Engine | Hercules/Bermite Mk. 36 Solid-fuel rocket |
Propellant | Solid |
Operational range | 9 km (5.6 mi) |
Maximum speed | In excess of Mach 2 (1,500 mph; 2,500 km/h) |
Guidance system |
|
Accuracy | Over 95% |
Launch platform | Mk 144 Guided Missile Launcher (GML) of the Mk 49 Guided Missile Launching System (GMLS) |
The RIM-116 Rolling Airframe Missile (RAM) is a small, lightweight, infrared homing surface-to-air missile in use by the German, Japanese, Greek, Turkish, South Korean, Saudi Arabian, Egyptian, Mexican, UAE, and United States navies. It was originally intended and used primarily as a point-defense weapon against anti-ship missiles. As its name indicates, RAM rolls as it flies. The missile must roll during flight because the RF tracking system uses a two-antenna interferometer that can measure phase interference of the electromagnetic wave in one plane only. The rolling interferometer permits the antennas to look at all planes of incoming energy. In addition, because the missile rolls, only one pair of steering canards is required. [2] As of 2005 [update] , it is the only U.S. Navy missile to operate in this manner. [3]
The Rolling Airframe Missiles, together with the Mk 49 Guided Missile Launching System (GMLS) and support equipment, make up the RAM Mk 31 Guided Missile Weapon System (GMWS). The Mk-144 Guided Missile Launcher (GML) unit weighs 5,777 kilograms (12,736 lb) and stores 21 missiles. The original weapon cannot employ its own sensors prior to firing, so it must be integrated with a ship's combat system, which directs the launcher at targets. On U.S. ships, it is integrated with the AN/SWY-2 Ship Defense Surface Missile System (SDSMS) and Ship Self-Defense System (SSDS) Mk 1 or Mk 2-based combat systems. SeaRAM, a launcher variant equipped with independent sensors derived from the Vulcan Phalanx CIWS, is being installed on Littoral Combat Ships and certain Arleigh Burke-class destroyers.
The RIM-116 was developed by General Dynamics Pomona and Valley Systems divisions under a July 1976 agreement with Denmark and West Germany (the General Dynamics missile business was later acquired by Hughes Aircraft and is today part of Raytheon). Denmark dropped out of the program, but the U.S. Navy joined in as the major partner. The Mk 49 launcher was evaluated on board the destroyer USS David R. Ray in the late 1980s. [3] The first 30 missiles were built in FY85, and they became operational on 14 November 1992, onboard USS Peleliu.
SeaRAM was developed in response to concerns about the performance of gun-based systems against modern supersonic sea-skimming anti-ship missiles. It was designed as a companion self-defense system to Phalanx. [4]
The RIM-116 is in service on several American and 30 German warships. All newly laid German Navy warships will be equipped with the RAM, such as the modern Braunschweig-class corvettes, which mount two RAM launchers per ship. The Greek Navy has equipped the new Super Vita–class fast attack craft with the RAM. South Korea has signed license-production contracts for their navy's KDX-II, KDX-III, and Dokdo-class amphibious assault ships. [5]
The U.S. Navy plans to purchase a total of about 1,600 RAMs and 115 launchers to equip 74 ships. The missile is currently active aboard Gerald R. Ford-class aircraft carriers, Nimitz-class aircraft carriers, Wasp-class amphibious assault ships, America-class amphibious assault ships, San Antonio-class amphibious transport dock ships, Whidbey Island-class dock landing ships, Harpers Ferry-class dock landing ships, and littoral combat ships (LCS). [6]
The original version of the missile, called Block 0, is based on the AIM-9 Sidewinder air-to-air missile, whose rocket motor, fuze, and warhead are used. Block 0 missiles were designed to initially home in on radiation emitted from a target (such as the active radar of an incoming anti-ship missile), switching to an infrared seeker derived from that of the FIM-92 Stinger missile for terminal guidance. In test firings, the Block 0 missiles achieved hit rates of over 95%.
The Block 1 (RIM-116B) is an improved version of the RAM missile that adds an overall infrared-only guidance system that enables it to intercept missiles that are not emitting any radar signals. The Block 0's radar homing capabilities have been retained.
The Block 2 (RIM-116C) is an upgraded version of the RAM missile aimed at more effectively countering more maneuverable anti-ship missiles through a four-axis independent control actuator system, increased rocket motor capability to 6.25–inch diameter, an improved passive radio frequency seeker and upgraded components of the infrared seeker, and advanced kinematics. [7] [8] On 8 May 2007, the U.S. Navy awarded Raytheon Missile Systems a $105 million development contract. Development was expected to be completed by December 2010. LRIP began in 2012. [9]
51 missiles were initially ordered. On 22 October 2012, the RAM Block 2 completed its third guided test vehicle flight, firing two missiles in a salvo and directly hitting the target, to verify the system's command and control capabilities, kinematic performance, guidance system, and airframe capabilities. Raytheon was scheduled to deliver 25 Block 2 missiles during the program's integrated testing phase. [10] [11] The Block 2 RAM was delivered to the U.S. Navy in August 2014, [12] with 502 missiles to be acquired from 2015 to 2019. [13] Initial Operational Capability (IOC) for the Block 2 RAM was achieved on 15 May 2015. [14]
In early 2018 the U.S. State Department approved the sale of RIM-116 Block II to the Mexican Navy for use on their future Sigma-class design frigates, the first of which was jointly built by Damen Schelde Naval Shipbuilding and launched in November 2018. [15] [16]
In 1998, a memorandum of understanding was signed by the defense departments of Germany and the United States to improve the system so that it could also engage so-called "HAS", Helicopter, Aircraft, and Surface targets. As developed, the HAS upgrade just required software modifications that can be applied to all Block 1 RAM missiles.
The SeaRAM combines the radar and electro-optical system [3] of the Phalanx CIWS Mk-15 Block 1B (CRDC) with an 11-cell RAM launcher to produce an autonomous system—one which does not need any external information to engage threats. Like the Phalanx, SeaRAM can be fitted to any class of ship. Due to the common mounting, SeaRAM inherits the relatively easy installation characteristics of its gun-based sibling, with Raytheon stating that SeaRAM "fits the exact shipboard installation footprint of the Phalanx, uses the same power and requires minimal shipboard modification". In 2008, the first SeaRAM system was delivered to be installed on USS Independence . [17]
As of December 2013 [update] , one SeaRAM is fitted to each Independence-class vessel. [18] In late 2014, the Navy revealed it had chosen to install the SeaRAM on its Small Surface Combatant LCS follow-on ships. [19] Beginning in November 2015, the Navy will complete installation of a SeaRAM on the first of four Arleigh Burke-class destroyers patrolling within the U.S. 6th Fleet. [20] The SeaRAM will equip the Royal Saudi Navy's multi-mission surface combat (MMSC) based on the Freedom-class littoral combat ships. [21]
Primary function: Surface-to-air missile
Contractor: Raytheon, Diehl BGT Defence
Block 1
Block 1A [7]
Block 2 [7]
The Dutch Ministry of Defence announced on 14 January 2021 that it wants to purchase the Rolling Airframe Missile to upgrade several of its ships, including the landing platform docks HNLMS Rotterdam and HNLMS Johan de Witt, the support ship HNLMS Karel Doorman and its new anti-submarine warfare frigates. [25]
The Canadian Government on 28 June 2024 when announcing the River-class destroyers published a fact sheet that showed the Rolling Airframe Missile. Replacing the previously selected CAMM for the close in defence role. [26]
The Phalanx CIWS is an automated gun-based close-in weapon system to defend military watercraft automatically against incoming threats such as aircraft, missiles, and small boats. It was designed and manufactured by the General Dynamics Corporation, Pomona Division, later a part of Raytheon. Consisting of a radar-guided 20 mm (0.8 in) Vulcan cannon mounted on a swiveling base, the Phalanx has been used by the United States Navy and the naval forces of 15 other countries. The U.S. Navy deploys it on every class of surface combat ship, except the Zumwalt-class destroyer and San Antonio-class amphibious transport dock. Other users include the British Royal Navy, the Royal Australian Navy, the Royal New Zealand Navy, the Royal Canadian Navy, and the U.S. Coast Guard.
An anti-ship missile is a guided missile that is designed for use against ships and large boats. Most anti-ship missiles are of the sea-skimming variety, and many use a combination of inertial guidance and active radar homing. A large number of other anti-ship missiles use infrared homing to follow the heat that is emitted by a ship; it is also possible for anti-ship missiles to be guided by radio command all the way.
The Arleigh Burke class of guided-missile destroyers (DDGs) is a United States Navy class of destroyer centered around the Aegis Combat System and the SPY-1D multi-function passive electronically scanned array radar. The class is named after Admiral Arleigh Burke, an American destroyer officer in World War II and later Chief of Naval Operations. With an overall length of 505 to 509.5 feet, displacement ranging from 8,300 to 9,700 tons, and weaponry including over 90 missiles, the Arleigh Burke-class destroyers are larger and more heavily armed than many previous classes of guided-missile cruisers.
The Aegis Combat System is an American integrated naval weapons system, which uses computers and radars to track and guide weapons to destroy enemy targets. It was developed by the Missile and Surface Radar Division of RCA, and it is now produced by Lockheed Martin.
Raytheon Missiles & Defense (RMD) was one of four business segments of RTX Corporation. Headquartered in Tucson, Arizona, its president was Wes Kremer. The business produced a broad portfolio of advanced technologies, including air and missile defense systems, precision weapons, radars, and command and control systems. Raytheon Intelligence & Space was merged with Raytheon Missiles & Defense in July 2023 to form the Raytheon business segment.
The RIM-7 Sea Sparrow is a U.S. ship-borne short-range anti-aircraft and anti-missile weapon system, primarily intended for defense against anti-ship missiles. The system was developed in the early 1960s from the AIM-7 Sparrow air-to-air missile as a lightweight "point-defense" weapon that could be retrofitted to existing ships as quickly as possible, often in place of existing gun-based anti-aircraft weapons. In this incarnation, it was a very simple system guided by a manually aimed radar illuminator.
USS Porter (DDG-78) is an Arleigh Burke-class destroyer in the United States Navy. Porter is the fifth US Navy ship to be named after US Navy officers Commodore David Porter, and his son, Admiral David Dixon Porter. This ship is the 28th destroyer of her class. Porter was the 12th ship of this class to be built at Ingalls Shipbuilding in Pascagoula, Mississippi. She was laid down on 2 December 1996, launched and christened on 12 November 1997, and commissioned 20 March 1999, in Port Canaveral, Florida.
The RIM-162 Evolved SeaSparrow Missile (ESSM) is a development of the RIM-7 Sea Sparrow missile used to protect ships from attacking missiles and aircraft. ESSM is designed to counter supersonic maneuvering anti-ship missiles. ESSM also has the ability to be "quad-packed" in the Mark 41 Vertical Launch System, allowing up to four ESSMs to be carried in a single cell.
The Naval Strike Missile (NSM) is an anti-ship and land-attack missile developed by the Norwegian company Kongsberg Defence & Aerospace (KDA).
The Sejong the Great-class destroyers, also known as KDX-III, are three guided-missile destroyers of the Republic of Korea Navy (ROKN).
The RIM-66 Standard MR (SM-1MR/SM-2MR) is a medium-range surface-to-air missile (SAM), with a secondary role as an anti-ship missile, developed for the United States Navy (USN). A member of the Standard Missile family of weapons, the SM-1 was developed as a replacement for the RIM-2 Terrier and RIM-24 Tartar that were deployed in the 1950s on a variety of USN ships. The RIM-67 Standard (SM-1ER/SM-2ER) is an extended range version of this missile with a solid rocket booster stage.
The RIM-67 Standard ER (SM-1ER/SM-2ER) is an extended range surface-to-air missile (SAM) with a secondary anti-ship capability, originally developed for the United States Navy (USN). The RIM-67 was developed as a replacement for the RIM-8 Talos, a 1950s system deployed on a variety of USN ships, and eventually replaced the RIM-2 Terrier as well, since it was of a similar size and fitted existing Terrier launchers and magazines. The RIM-66 Standard MR was essentially the same missile without the booster stage, designed to replace the RIM-24 Tartar. The RIM-66/67 series thus became the US Navy's universal SAM system, hence the designation "Standard Missile".
The RIM-174 Standard Extended Range Active Missile (ERAM), or Standard Missile 6 (SM-6), is a missile in current production for the United States Navy (USN). It was designed for extended-range anti-air warfare (ER-AAW) purposes, providing capability against fixed and rotary-wing aircraft, unmanned aerial vehicles, anti-ship cruise missiles in flight, both over sea and land, and terminal ballistic missile defense. It can also be used as a high-speed anti-ship missile. The missile uses the airframe of the earlier SM-2ER Block IV (RIM-156A) missile, adding the active radar homing seeker from the AIM-120C AMRAAM in place of the semi‑active seeker of the previous design. This will improve the capability of the Standard missile against highly agile targets and targets beyond the effective range of the launching vessels' target illumination radars. Initial operating capability was planned for 2013 and was achieved on 27 November 2013. The SM-6 is not meant to replace the SM-2 series of missiles but will serve alongside and provide extended range and increased firepower. It was approved for export in January 2017. An air-to-air variant of the SM-6, known as the AIM-174, is the first dedicated long-range air-to-air missile employed by the USN since the 2004 retirement of the AIM-54 Phoenix. SM-6 can also be fired from the U.S. Army's Typhon missile launcher as part of the Strategic Mid-range Fires System (SMRF).
The AGM-176 Griffin is a lightweight, precision-guided munition developed by Raytheon. It can be launched from the ground or air as a rocket-powered missile or dropped from the air as a guided bomb. It carries a relatively small warhead, and was designed to be a precision low-collateral damage weapon for irregular warfare. It has been used in combat by the United States military during the War in Afghanistan.
The Independence class is a class of littoral combat ships built for the United States Navy.
The Freedom class is one of two classes of the littoral combat ship program, built for the United States Navy.
RIM-101 was a short-lived project by the United States Navy to develop a surface-to-air missile (SAM) for the defense of naval vessels. Developed during the early 1970s, the project, possibly derived from the RIM-7 Sea Sparrow, was cancelled before the start of detailed design work.
The Mark 41 vertical launching system is a shipborne missile canister launching system which provides a rapid-fire launch capability against hostile threats. The vertical launching system (VLS) concept was derived from work on the Aegis Combat System.
The Sea Oryx is a lightweight, infrared homing short-range air defense system developed for the Republic of China (Taiwan) Navy. Based on the TC-1L surface-to-air missile, it is designed to defend against anti-ship missiles, helicopters, and low flying fixed-wing jet airplanes. It is reported to have strong similarities to the American/German RIM-116 Rolling Airframe Missile and uses components of the Sky Sword I air-to-air missile.
ARM Benito Juárez (POLA-101) is the lead ship of Reformador-class frigate of the Mexican Navy. Previously was named as ARM Reformador until March 2020, the ship is officially classified as "long-range ocean patrol ship".