Roland (missile)

Last updated
Roland
Xmim-115a-1.jpg
TypeSurface-to-air missile
Place of originFrance and West Germany
Service history
In service1977–present
Wars Iran-Iraq War
Falklands War
Persian Gulf War
Iraq War
Production history
Designed1963
Manufacturer Euromissile
Specifications
Mass67 kg
Length2.40 m
Diameter16 cm
Wingspan50 cm
Warhead6.5 kg (14 lb) pre-fragmented high-explosive

EngineDual-thrust solid-fueled rocket:
  • Booster: "Roubaix" rocket, 15.3 kN for 1.7 s
  • Sustainer: "Lampyre" rocket, 1.96 kN for 13.2 s
Operational
range
8,000 m
Flight altitude5,500 m
Maximum speed Mach 1.6
Guidance
system
tracking radar
White Sands Missile Range Museum Roland display White Sands Missile Range Museum Roland display.jpg
White Sands Missile Range Museum Roland display
Abortive U.S. Army version of Roland, mounted on its purpose-designed XM975 vehicle (single prototype built, the production vehicle if the program had proceeded would have been designated as the M975). Roland tank 01.jpg
Abortive U.S. Army version of Roland, mounted on its purpose-designed XM975 vehicle (single prototype built, the production vehicle if the program had proceeded would have been designated as the M975).

The Roland is a Franco-German mobile short-range surface-to-air missile (SAM) system. The Roland was also purchased by the U.S. Army as one of very few foreign SAM systems.

Contents

Development

Roland was designed to a joint French and German requirement for a low-level mobile missile system to protect mobile field formations and fixed, high-value targets such as airfields. Development began in 1963 as a study by Nord Aviation of France and Bölkow of Germany with the system then called SABA in France and P-250 in Germany. [1] The two companies formed a joint development project in 1964 and later (as Aérospatiale of France and MBB of Germany) founded the Euromissile company for this and other missile programs. Aerospatiale took primary responsibility for the Roland 1 day/clear-weather system while MBB took primary responsibility for the Roland 2 all-weather system. Aerospatiale was also responsible for the rear and propulsion system of the missile while MBB developed the front end of the missile with warhead and guidance systems. The first guided launch of a Roland prototype took place in June 1968, destroying a Nord Aviation CT20 target drone and fielding of production systems was expected from January 1970. The test and evaluation phase took much longer than originally anticipated with the clear-weather Roland I finally entering operational service with the French Army in April 1977, while the all-weather Roland II was first fielded by the German Army in 1978 followed by the French Army in 1981. [1] The long delays and ever-increasing costs combined with inflation meant Roland was never procured in the numbers originally anticipated.

Variants

The Roland SAM system was designed to engage enemy air targets flying at speeds of up to Mach 1.3 at altitudes between 20 meters and 5,500 meters with a minimum effective range of 500 meters and a maximum of 6,300 meters. The system can operate in optical or radar mode and can switch between these modes during an engagement. A pulse-doppler search radar with a range of 15–18 km detects the target which can then be tracked either by the tracking radar or an optical tracker. The optical channel would normally be employed only in daylight against very low-level targets or in a heavy jamming environment. [2]

The Roland missile is a two-stage solid propellant unit 2.4 meters long with a weight of 66.5 kg including the 6.5 kg multiple hollow-charge fragmentation warhead which contains 3.5 kg of explosive detonated by impact or proximity fuses. The 65 projectile charges have a lethal radius of 6 meters. Cruising speed is Mach 1.6. The missile is delivered in a sealed container which is also the launch tube. Each launcher carries two launch tubes with 8 more inside the vehicle or shelter with automatic reloading in 10 seconds.

For defense of fixed sites such as airfields the shelter Roland can be integrated in the CORAD (Co-ordinated Roland Air Defense) system which can include a surveillance radar, a Roland Co-ordination Center, 8 Roland fire units and up to 8 guns. [2]

Fire units

Missile variants

A Roland 2 missile system on the Marder 1 tracked chassis seen under camouflage netting during exercise in 1985. Roland II SAM.JPEG
A Roland 2 missile system on the Marder 1 tracked chassis seen under camouflage netting during exercise in 1985.
Roland 1/2
The initial missile for the Roland system, entering production in 1977. Roland has a speed of 550 m/s and a range of 6.2 km. Roland 1 and 2 missiles have identical statistics but differ in tracking modes, Roland 1 being optically tracked, while Roland 2 missiles incorporate a continuous wave beacon to allow automatic radar tracking. [5] [10]
Roland 3
An upgraded missile which entered production in 1988 with speed increased from 550 m/s to 620 m/s and range increased from 6.3 to 8.5 km with maximum effective altitude increased to 6,000 m. Warhead size is also increased to 9.1 kg with 84 hollow-charges. Response time for the first target is quoted as 6–8 seconds with 2–6 seconds for subsequent targets. The Roland 3 missile can be used by all Roland systems. [6]
Roland RM5 (Roland Mach 5)
This was a joint project between the then Matra and Aerospatiale of France and MBB of Germany begun in 1987 for a missile with increased speed and range. RM5 was designed to achieve speeds of 1,600 m/s (Mach 5.0) with the range increased to 10 km. The RM5 warhead had an 11 kg warhead with dual detonation modes, able to produce either large, high energy fragments for use against armoured targets, or larger numbers of smaller fragments for use against small targets. The companies had committed to only the preliminary design phase and when Germany and France opted not to fund full scale development in 1991 development of RM-5 ceased. [6] [9]
VT1
In September 1991 Euromissile and the then Thomson CSF (now Thales Group) agreed to integrate the VT1 missile of the Crotale NG system into the Roland 3 system with retrofitting of French and German Roland fire units from 1996. Thales subsequently revoked the Euromissile license, but was ordered to pay Euromissile $109m in a subsequent court case. [6] [11]
HFK/KV
HFK/KV was a BGT proposed alternative to VT1. It was a hypersonic missile with a speed of over Mach 5, intended to reach maximum range of 12 km in only 60% of the time taken by VT1. Guidance was to be inertial with terminal infra-red homing.

Current systems are capable of launching Roland 2, Roland 3 or VT1 missiles. Roland's latest upgraded versions have limited ability to counter incoming low radar cross-section munitions (large-caliber heavyweight rockets).

Carriers

AMX-30R formerly of the 401 Regiment d'Artillerie (401 RA) on external display at the Musee des Blindes, Saumur. AMX-30 Roland img 2306.jpg
AMX-30R formerly of the 401 Régiment d'Artillerie (401 RA) on external display at the Musée des Blindés, Saumur.

The Roland system has been installed on a variety of platforms, amongst them:

Tracked
Wheeled

Roland 2 was proposed in the early 1980s for installation on the Leopard 1 tank chassis, probably to meet an expected Dutch army requirement but was never built. In configuration it would have been very similar to the AMX-30R.

American Roland on the M109 chassis was built in prototype form but production systems were rather hastily installed on 6×6 flatbed trucks. In the late 1980s there was an attempt to revive the American Roland program with the Paladin submission to the U.S. Army's LOS-F-H (Line Of Sight - Forward - Heavy) battlefield air defense program. This new version of the American Roland system would have used the existing XM975 vehicle for testing & evaluation purposes, with production systems being fitted on a new modified M2 Bradley chassis. [12]

An airliftable shelter named Roland CAROL has also been developed, which is a 7.8t container that can be deployed on the ground to protect fixed assets like airfields or depots or fitted on an ACMAT truck.

Users

The Roland system served in the US in a limited capacity on an improvised wheeled truck chassis; never type classified and withdrawn unceremoniously in 1988. Roland SAM Launch on US Wheeled Chassis (DA-SC-88-01653).jpg
The Roland system served in the US in a limited capacity on an improvised wheeled truck chassis; never type classified and withdrawn unceremoniously in 1988.
The Marder-Roland units bought by the Brazilian Army in the late '70s were retired in 2001 and are now on display at Museu Militar Conde de Linhares in Rio de Janeiro, Brazil. Marder Roland.jpg
The Marder-Roland units bought by the Brazilian Army in the late '70s were retired in 2001 and are now on display at Museu Militar Conde de Linhares in Rio de Janeiro, Brazil.

Combat use

On 1 June 1982, during the Falklands War, Sea Harrier XZ456 was destroyed south of Stanley, by a Roland launched by members of the Argentine Army's GADA 601 (601st AA Artillery Group). [17] The launcher, one of four examples delivered to Argentina, was later captured in fairly intact condition by the British around Port Stanley after the surrender. It was taken back to Britain as a valuable prize and studied in detail.[ citation needed ]

At around 11:00 pm on 17 January 1991, an A-6E TRAM Intruder from VA-35, AA-510 (BuNo 161668), crewed by Lt. Bob Wetzel and Lt. Jeff Zaun was attacked by two Rolands while attacking the H-3 Airfield in Western Iraq. The Roland did not set off the American-built RWRs, meaning that it was hard to detect. After evading the first Roland, another one (which the crew didn't see), impacted the aircraft. The crew successfully ejected but were soon captured. [15] On 19 January 1991, during the Gulf War a RAF Panavia Tornado  GR.1 ZA396/GE, on a SEAD mission against the Iraqi air base at Tallil, was destroyed by a Roland. Both crew members ejected successfully, were taken prisoner and survived the war. The destruction of at least one USAF A-10 Thunderbolt, which occurred at around the same time, was later attributed to a Roland, [18] by the Pentagon.

Rolandgate

In October 2003, controversy erupted between Poland and France when Polish forces from the Multinational force in Iraq found four French Roland surface-to-air missiles. [19] [20] Polish and international press reported that Polish officers claimed these missiles had been manufactured in 2003. [20] France pointed out that it had never sold weapons to Iraq after July 1990 in violation of the embargo. [20] Polish authorities would later remark that the four missiles were manufactured in 1984, and that the 2003 date was the last time when Iraqi personnel had serviced them. [19] Investigations by the Polish authorities came to the conclusion that the persons responsible for the scandal were low level commanders. Wojskowe Służby Informacyjne, the Polish Army's intelligence unit, had not verified their claims before they were leaked to the press. Poland apologized to France for the scandal, but these allegations against France worsened the already somewhat strained relationships between the two countries. The entire incident was sarcastically called "Rolandgate" by the Polish media, using the unofficial naming conventions of US political scandals after Watergate.

Operators

Current operators

Former operators

FlaRakRad Roland: 15 t MAN truck-based system Waffensystem Roland auf Lkw 15 t (FlaRakRad).JPG
FlaRakRad Roland: 15 t MAN truck-based system

See also

Related Research Articles

<span class="mw-page-title-main">Armoured fighting vehicle</span> Combat vehicle with both armament and armour

An armoured fighting vehicle or armored fighting vehicle (AFV) is an armed combat vehicle protected by armour, generally combining operational mobility with offensive and defensive capabilities. AFVs can be wheeled or tracked. Examples of AFVs are tanks, armoured cars, assault guns, self-propelled artilleries, infantry fighting vehicles (IFV), and armoured personnel carriers (APC).

<span class="mw-page-title-main">Self-propelled anti-aircraft weapon</span> Mobile vehicle with a dedicated anti-aircraft capability

An anti-aircraft vehicle, also known as a self-propelled anti-aircraft gun (SPAAG) or self-propelled air defense system (SPAD), is a mobile vehicle with a dedicated anti-aircraft capability.

<span class="mw-page-title-main">MIM-104 Patriot</span> American surface-to-air missile system

The MIM-104 Patriot is a mobile interceptor missile surface-to-air missile (SAM) system, the primary such system used by the United States Army and several allied states. It is manufactured by the U.S. defense contractor Raytheon and derives its name from the radar component of the weapon system. The AN/MPQ-53 at the heart of the system is known as the "Phased Array Tracking Radar to Intercept on Target," which is a backronym for "Patriot". In 1984, the Patriot system began to replace the Nike Hercules system as the U.S. Army's primary high to medium air defense (HIMAD) system and the MIM-23 Hawk system as the U.S. Army's medium tactical air defense system. In addition to these roles, Patriot has been given a function in the U.S. Army's anti-ballistic missile (ABM) system. As of 2016, the system is expected to stay fielded until at least 2040.

<span class="mw-page-title-main">Rapier (missile)</span> Surface-to-air missile

Rapier is a surface-to-air missile developed for the British Army to replace their towed Bofors 40/L70 anti-aircraft guns. The system is unusual as it uses a manual optical guidance system, sending guidance commands to the missile in flight over a radio link. This results in a high level of accuracy, therefore a large warhead is not required.

<span class="mw-page-title-main">Mistral (missile)</span> French short range air defense system

The Missile Transportable Anti-aérien Léger, commonly called Mistral, is a French infrared homing short range air defense system manufactured by MBDA France. Based on the French SATCP, the development of the portable system later to become the Mistral began in 1974. The first version of the system was introduced in 1988 (S1), the second in 1997, and the third in 2018.

<span class="mw-page-title-main">Air Defense Anti-Tank System</span> Self-propelled Anti-Aircraft and Anti-Tank Missile System

The Oerlikon/Martin Marietta air defense anti-tank system is a dual-purpose short range surface-to-air and anti-tank missile system based on the M113A2 vehicle. The ADATS missile is a laser-guided supersonic missile with a range of 10 kilometers, with an electro-optical sensor with TV and forward looking infrared (FLIR). The carrying vehicle also has a search radar with an effective range of over 25 kilometers.

<span class="mw-page-title-main">AMX-30</span> 1966 French main battle tank

The AMX-30 is a main battle tank designed by Ateliers de construction d'Issy-les-Moulineaux and first delivered to the French Army in August 1966. The first five tanks were issued to the 501st Régiment de Chars de Combat in August of that year. The production version of the AMX-30B weighed 36 metric tons, and sacrificed protection for increased mobility. The French believed that it would have required too much armour to protect against the latest anti-tank threats, thereby reducing the tank's maneuverability. Protection, instead, was provided by the speed and the compact dimensions of the vehicle, including a height of 2.28 metres. It had a 105 mm gun, firing a then advanced high-explosive anti-tank (HEAT) warhead known as the Obus G. The Obus G used an outer shell, separated from the main charge by ball bearings, to allow the round to be spin stabilized by the gun without spinning the warhead inside which would disrupt jet formation. Mobility was provided by the 720 horsepower (540 kW) HS-110 diesel engine, although the troublesome transmission adversely affected the tank's performance.

<span class="mw-page-title-main">AN/TWQ-1 Avenger</span> Self-propelled surface-to-air missile system

The Avenger Air Defense System, designated AN/TWQ-1 under the Joint Electronics Type Designation System, is an American self-propelled surface-to-air missile system which provides mobile, short-range air defense protection for ground units against cruise missiles, unmanned aerial vehicles, low-flying fixed-wing aircraft, and helicopters.

<span class="mw-page-title-main">2K12 Kub</span> Tracked medium-range surface-to-air missile system

The 2K12 "Kub" mobile surface-to-air missile system is a Soviet low to medium-level air defence system designed to protect ground forces from air attack. 2К12 is the GRAU designation of the system.

<span class="mw-page-title-main">Transporter erector launcher</span> Self-propelled heavy missile systems

A transporter erector launcher (TEL) is a missile vehicle with an integrated tractor unit that can transport, elevate to a firing position and launch one or more rockets or missiles.

<span class="mw-page-title-main">9K33 Osa</span> Vehicle-launched surface-to-air missile system

The 9K33 Osa is a highly mobile, low-altitude, short-range tactical surface-to-air missile system developed in the Soviet Union in the 1960s and fielded in 1972. Its export version name is Romb.

<span class="mw-page-title-main">Crotale (missile)</span> Short-range anti-air missile

The Crotale is a French, all-weather, short-range surface-to-air missile system developed to intercept airborne ranged weapons and aircraft, from cruise or anti-ship missiles to helicopters, UAVs or low-flying high-performance fighter aircraft. It was developed by Thomson CSF Matra and consists of a mobile land-based variant as well as various naval ones.

<span class="mw-page-title-main">HOT (missile)</span> French/German anti-tank missile

The HOT is a second-generation long-range anti-tank guided missile system. It was developed originally to replace the older SS.11 wire guided missile in French and West German service. It was jointly developed by French company Nord Aviation and the West German Bölkow. Nord Aviation and Bölkow would later merged with other companies to respectively form Aérospatiale and Messerschmitt-Bölkow-Blohm (MBB).

<span class="mw-page-title-main">MIM-72 Chaparral</span> Mobile SAM system

The MIM-72A/M48 Chaparral is an American-made self-propelled surface-to-air missile system based on the AIM-9 Sidewinder air-to-air missile system. The launcher is based on the M113 family of vehicles. It entered service with the United States Army in 1969 and was phased out between 1990 and 1998. It was intended to be used along with the M163 VADS, the Vulcan ADS covering short-range short-time engagements, and the Chaparral for longer range use.

<span class="mw-page-title-main">AMX-10P</span> Infantry fighting vehicle

The AMX-10P is a French amphibious infantry fighting vehicle. It was developed from 1965 onwards to replace the AMX-VCI in the French Army. It served with the French Army from its introduction in 1973 until its retirement in 2015, when it was fully replaced by the VBCI.

<span class="mw-page-title-main">Pantsir missile system</span> Self-propelled anti-aircraft weapon

The Pantsir missile system is a family of self-propelled, medium-range surface-to-air missile and anti-aircraft artillery systems. Three types of vehicles make up one system: a missile launcher, a radar truck and a command post. Starting with the Pantsir-S1 as the first version, it is produced by KBP Instrument Design Bureau of Tula, Russia, and is the successor to the Tunguska M1.

<span class="mw-page-title-main">C-RAM</span> Military air defense system

Counter rocket, artillery, and mortar, abbreviated C-RAM or counter-RAM, is a set of systems used to detect and/or destroy incoming rockets, artillery, and mortars before they hit their targets, or provide early warning.

<span class="mw-page-title-main">Type 95 SPAAA</span> Self-propelled anti-aircraft gun/missile system

The Type 95 is a Chinese self-propelled anti-aircraft vehicle. It is armed with four 25 mm caliber cannons and optionally four fire-and-forget QW-2 infrared homing missiles. It was first displayed publicly at the Beijing Military Parade in 1999. Earlier in development the system was designated Type 90-II and Type 90-III.

<span class="mw-page-title-main">Missile vehicle</span> Vehicle used to transport missiles and rocket artillery

A missile vehicle, also known as a missile carrier, missile truck, or missile launcher vehicle, is a military vehicle that is purpose-built and designed to carry missiles, either for safe transportation or for launching missiles in combat. Missile vehicles include transporter erector launchers (TEL) and multiple rocket launchers (MRL).

<span class="mw-page-title-main">TRML</span> Air defense radar system

The TRML is a family of air defense radars first developed by Telefunken and currently produced by Hensoldt. It is a development of the earlier TRMS.

References

  1. 1 2 3 4 Gunston
  2. 1 2 3 Jane's Armour and Artillery
  3. National Defense University Washington DC Research Directorate; Malone,Daniel K (May 1980). Roland: A Case for or Against NATO Standardization? (Report). DTIC. Archived from the original on March 20, 2017. Retrieved 19 March 2017.
  4. Fast, Richard Charles; Air Force Institute of Technology Wright-Patterson Air Force Base (July 1981). The Politics of Weapons Standardization in NATO (Ph.D.). DTIC. Archived from the original on March 20, 2017. Retrieved 19 March 2017.
  5. 1 2 3 4 ForecastInternational
  6. 1 2 3 4 5 6 7 8 9 10 Jane's Land Based Air Defense
  7. A.Schieb. "ROLAND-LVB". Flarakgrp42.de. Retrieved 11 April 2018.
  8. "Successful Conclusion of Roland NDV Official Troop Trials". Defense-aerospace.com. Retrieved 11 April 2018.
  9. 1 2 "Archived copy". Archived from the original on 2017-10-13. Retrieved 2017-06-18.{{cite web}}: CS1 maint: archived copy as title (link)
  10. "Air-defence missile systems". Flightglobal.com. Retrieved 15 March 2019.
  11. "Thales challenges court's licensing decision". flightglobal.com. 19 November 2002. Retrieved 11 April 2018.
  12. Babbitt, Bettina A.; Muckler, Frederick A.; Seven, Sally A. (June 1989). Human Factors Performance Data for Future Forward Area Air Defense Systems (FAADS) [Final Report October 1986-December 1987] (Technical report). Essex Corporation, Westlake Village, California. Archived from the original on March 20, 2017.
  13. Army Technology
  14. David H. S. Morgan (2006). Hostile Skies: The Falklands Conflict Through the Eyes of a Sea Harrier Pilot. Weidenfeld & Nicolson. pp. 200–201. ISBN   978-0-297-84645-1.
  15. 1 2 Morgan, Rick (2017). A-6 Intruder Units: 1974-1996. Osprey Publishing.
  16. "French connection armed Saddam". The Washington Times . 8 September 2004. Retrieved 11 April 2018.
  17. Smith, Gordon: Battle Atlas of the Falklands War 1982. Lulu.com, 2006, page 97. ISBN   1-84753-950-5. (in Spanish)
  18. "French connection armed Saddam". The Washington Times . Retrieved 11 April 2018.
  19. 1 2 Stylinski, Andrzej (16 October 2003). "Poland says French missiles found in Iraq were made in 1984". Associated Press. Archived from the original on 24 September 2015. Retrieved 22 August 2015.
  20. 1 2 3 Pasek, Beata (4 October 2003). "Poland retracts charge that new French missiles found in Iraq after French denials". Associated Press. Archived from the original on 24 September 2015.
  21. Debay, Yves (2003). Operation Iraqi Freedom: Victory in Baghdad. Special Obs 27. Concord Publication. p. 39. ISBN   962-361-067-X.
  22. "Forecast International: Intelligence Center".
  23. "Na Hrvaškem uničili slovenske rakete zemlja-zrak, Slovenija brez učinkovite protizračne obrambe". Insajder.com - Objektivno. Odkrito. Točno. 28 January 2018. Retrieved 15 March 2019.

Sources