Tetramethylammonium auride

Last updated
Tetramethylammonium auride
Tetramethylammonium auride.png
Tetramethylammonium-auride-3D-vdW.png
Names
IUPAC name
N,N,N-Trimethylmethanaminium auride
Identifiers
3D model (JSmol)
  • InChI=1S/C4H12N.Au/c1-5(2,3)4;/h1-4H3;/q+1;-1
    Key: FNABMZORGWEURW-UHFFFAOYSA-N
  • C[N+](C)(C)C.[Au-]
Properties
C4H12AuN
Molar mass 271.114 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetramethylammonium auride, (CH3)4NAu, is an ionic compound containing tetramethylammonium as cation and gold in a –1 oxidation state as anion. It is an example of a compound containing this rare ionic form of gold, and the first auride paired with a cation that is not a metal atom that has been synthesized. [1] Tetramethylammonium has an advantage in being able to simulate a large cation such as caesium better than the ammonium ion can, which allows it to pair better with the large auride anion.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Ionic bonding</span> Chemical bonding involving attraction between ions

Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds. It is one of the main types of bonding, along with covalent bonding and metallic bonding. Ions are atoms with an electrostatic charge. Atoms that gain electrons make negatively charged ions. Atoms that lose electrons make positively charged ions. This transfer of electrons is known as electrovalence in contrast to covalence. In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. molecular ions like NH+
4
or SO2−
4
. In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal to obtain a full valence shell for both atoms.

<span class="mw-page-title-main">Salt (chemistry)</span> Chemical compound involving ionic bonding

In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions (cations) and negatively charged ions (anions), which results in a compound with no net electric charge. The constituent ions are held together by electrostatic forces termed ionic bonds.

In organic chemistry, a carbanion is an anion in which carbon is negatively charged.

<span class="mw-page-title-main">Fajans' rules</span> Explains the covalent character in molecules

In inorganic chemistry, Fajans' rules, formulated by Kazimierz Fajans in 1923, are used to predict whether a chemical bond will be covalent or ionic, and depend on the charge on the cation and the relative sizes of the cation and anion. They can be summarized in the following table:

<span class="mw-page-title-main">Quaternary ammonium cation</span> Polyatomic ions of the form N(–R)₄ (charge +1)

In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR4]+, where R is an alkyl group, an aryl group or organyl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

<span class="mw-page-title-main">Ozonide</span> Polyatomic ion (O3, charge –1), or cyclic compounds made from ozone and alkenes

Ozonide is the polyatomic anion O−3. Cyclic organic compounds formed by the addition of ozone to an alkene are also called ozonides.

<span class="mw-page-title-main">Xenon tetrafluoride</span> Chemical compound

Xenon tetrafluoride is a chemical compound with chemical formula XeF
4
. It was the first discovered binary compound of a noble gas. It is produced by the chemical reaction of xenon with fluorine:

<span class="mw-page-title-main">Triiodide</span> Ion

In chemistry, triiodide usually refers to the triiodide ion, I
3
. This anion, one of the polyhalogen ions, is composed of three iodine atoms. It is formed by combining aqueous solutions of iodide salts and iodine. Some salts of the anion have been isolated, including thallium(I) triiodide (Tl+[I3]) and ammonium triiodide ([NH4]+[I3]). Triiodide is observed to be a red colour in solution.

Chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC).

The bond valencemethod or mean method is a popular method in coordination chemistry to estimate the oxidation states of atoms. It is derived from the bond valence model, which is a simple yet robust model for validating chemical structures with localized bonds or used to predict some of their properties. This model is a development of Pauling's rules.

<span class="mw-page-title-main">Tetramethylammonium hydroxide</span> Chemical compound

Tetramethylammonium hydroxide (TMAH or TMAOH) is a quaternary ammonium salt with molecular formula N(CH3)4+ OH. It is commonly encountered in form of concentrated solutions in water or methanol. TMAH in solid state and its aqueous solutions are all colorless, but may be yellowish if impure. Although TMAH has virtually no odor when pure, samples often have a strong fishy smell due to presence of trimethylamine which is a common impurity. TMAH has several diverse industrial and research applications.

<span class="mw-page-title-main">Gold compounds</span>

Gold compounds are compounds by the element gold (Au). Although gold is the most noble of the noble metals, it still forms many diverse compounds. The oxidation state of gold in its compounds ranges from −1 to +5, but Au(I) and Au(III) dominate its chemistry. Au(I), referred to as the aurous ion, is the most common oxidation state with soft ligands such as thioethers, thiolates, and organophosphines. Au(I) compounds are typically linear. A good example is Au(CN)−2, which is the soluble form of gold encountered in mining. The binary gold halides, such as AuCl, form zigzag polymeric chains, again featuring linear coordination at Au. Most drugs based on gold are Au(I) derivatives.

Arsenic trifluoride is a chemical compound of arsenic and fluorine with the chemical formula AsF3. It is a colorless liquid which reacts readily with water.

<span class="mw-page-title-main">Tetramethylammonium pentafluoroxenate</span> Chemical compound

Tetramethylammonium pentafluoroxenate is a chemical compound with the chemical formula [N(CH3)4]+[XeF5]. This salt consists of tetramethylammonium cations [N(CH3)4]+ and pentafluoroxenate(IV) anions [XeF5]. The [XeF5] ion was the first example of a pentagonal planar molecular geometry AX5E2 species. It was prepared by the reaction of [N(CH3)4]F with xenon tetrafluoride, [N(CH3)4]F being chosen because it can be prepared in anhydrous form and is readily soluble in organic solvents. The anion is planar, with the fluorine atoms in a slightly distorted pentagonal coordination. Other salts have been prepared with sodium, caesium and rubidium, and vibrational spectra show that these contain the same planar ion. The isolated anion has the point group of D5h.

<span class="mw-page-title-main">Ion</span> Particle, atom or molecule with a net electrical charge

An ion is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons.

<span class="mw-page-title-main">Tetramethylammonium chloride</span> Chemical compound

Tetramethylammonium chloride is one of the simplest quaternary ammonium salts, with four methyl groups tetrahedrally attached to the central N. The chemical formula (CH3)4N+Cl is often abbreviated further as Me4N+Cl. It is a hygroscopic colourless solid that is soluble in water and polar organic solvents. Tetramethylammonium chloride is a major industrial chemical, being used widely as a chemical reagent and also as a low-residue bactericide in such processes as hydrofracking. In the laboratory, it has fewer synthetic chemical applications than quaternary ammonium salts containing longer N-alkyl substituents, which are used extensively as phase-transfer catalysts.

<span class="mw-page-title-main">Caesium auride</span> Chemical compound

Caesium auride is the inorganic compound with the formula CsAu. It is the Cs+ salt of the unusual Au anion.

<span class="mw-page-title-main">Tetramethylammonium</span> Polyatomic ion (N(CH₃)₄, charge +1)

Tetramethylammonium (TMA) is the simplest quaternary ammonium cation. It has the chemical formula [Me4N]+ and consists of four methyl groups attached to a central nitrogen atom. The cation is isoelectronic with neopentane. It is positively-charged and can only be isolated in association with a counter-ion. Common salts include tetramethylammonium chloride and tetramethylammonium hydroxide. Tetramethylammonium salts are used in chemical synthesis and in pharmacological research. It confers no color to its salts.

Tetranitratoborate is an anion composed of boron with four nitrate groups. It has formula [B(NO3)4]. It can form salts with large cations such as tetramethylammonium nitratoborate, or tetraethylammonium tetranitratoborate. The ion was first discovered by C. R. Guibert and M. D. Marshall in 1966 after failed attempts to make neutral (non-ionic) boron nitrate, B(NO3)3, which has resisted attempts to make it; if it exists, it is unstable above −78 °C.

The phosphaethynolate anion, also referred to as PCO, is the phosphorus-containing analogue of the cyanate anion with the chemical formula [PCO] or [OCP]. The anion has a linear geometry and is commonly isolated as a salt. When used as a ligand, the phosphaethynolate anion is ambidentate in nature meaning it forms complexes by coordinating via either the phosphorus or oxygen atoms. This versatile character of the anion has allowed it to be incorporated into many transition metal and actinide complexes but now the focus of the research around phosphaethynolate has turned to utilising the anion as a synthetic building block to organophosphanes.

References

  1. Dietzela, Pascal D. C.; Jansen, Martin (2001). "Synthesis and crystal structure determination of tetramethylammonium auride". Chemical Communications (21): 2208–2209. doi:10.1039/B105648B. PMID   12240114.

Further reading