UDP-glucuronate 5'-epimerase

Last updated
UDP-glucuronate 5'-epimerase
Identifiers
EC no. 5.1.3.12
CAS no. 37318-38-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an UDP-glucuronate 5'-epimerase (EC 5.1.3.12) is an enzyme that catalyzes the chemical reaction

UDP-glucuronate UDP-L-iduronate

Hence, this enzyme has one substrate, UDP-glucuronate, and one product, UDP-L-iduronate.

This enzyme belongs to the family of isomerases, specifically those racemases and epimerases acting on carbohydrates and derivatives. The systematic name of this enzyme class is UDP-glucuronate 5'-epimerase. Other names in common use include uridine diphosphoglucuronate 5'-epimerase, UDP-glucuronic acid 5'-epimerase, and C-5-uronosyl epimerase. This enzyme participates in nucleotide sugars metabolism. It employs one cofactor, NAD+.

Related Research Articles

Glucuronidation is often involved in drug metabolism of substances such as drugs, pollutants, bilirubin, androgens, estrogens, mineralocorticoids, glucocorticoids, fatty acid derivatives, retinoids, and bile acids. These linkages involve glycosidic bonds.

<span class="mw-page-title-main">Glucuronic acid</span> Sugar acid

Glucuronic acid is a uronic acid that was first isolated from urine. It is found in many gums such as gum arabic, xanthan, and kombucha tea and is important for the metabolism of microorganisms, plants and animals.

<span class="mw-page-title-main">Glucuronosyltransferase</span> Class of enzymes

Uridine 5'-diphospho-glucuronosyltransferase is a microsomal glycosyltransferase that catalyzes the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. This is a glucuronidation reaction.

<span class="mw-page-title-main">Uridine diphosphate glucose</span> Chemical compound

Uridine diphosphate glucose is a nucleotide sugar. It is involved in glycosyltransferase reactions in metabolism.

<span class="mw-page-title-main">Heparosan-N-sulfate-glucuronate 5-epimerase</span>

Heparosan-N-sulfate-glucuronate 5-epimerase is an enzyme with systematic name poly( -beta-D-glucuronosyl- -N-sulfo-alpha-D-glucosaminyl) glucurono-5-epimerase. This enzyme catalyses the following chemical reaction

In enzymology, a chondroitin-glucuronate 5-epimerase is an enzyme that catalyzes the chemical reaction

In enzymology, an UDP-arabinose 4-epimerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-glucose 4-epimerase</span> Class of enzymes

The enzyme UDP-glucose 4-epimerase, also known as UDP-galactose 4-epimerase or GALE, is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in the Leloir pathway of galactose metabolism, catalyzing the reversible conversion of UDP-galactose to UDP-glucose. GALE tightly binds nicotinamide adenine dinucleotide (NAD+), a co-factor required for catalytic activity.

In enzymology, an UDP-glucuronate 4-epimerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-N-acetylglucosamine 2-epimerase</span> Class of enzymes

In enzymology, an UDP-N-acetylglucosamine 2-epimerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-N-acetylglucosamine 4-epimerase</span> Class of enzymes

In enzymology, an UDP-N-acetylglucosamine 4-epimerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase</span>

In enzymology, a galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronate-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UXS1</span>

UDP-glucuronic acid decarboxylase 1 is an enzyme that in humans is encoded by the UXS1 gene.

David Sidney Feingold was an American biochemist.

UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating) (EC 1.1.1.305, UDP-GlcUA decarboxylase, ArnADH) is an enzyme with systematic name UDP-glucuronate:NAD+ oxidoreductase (decarboxylating). This enzyme catalyses the following chemical reaction

Cyanidin-3-O-glucoside 2-O-glucuronosyltransferase is an enzyme with systematic name UDP-D-glucuronate:cyanidin-3-O-beta-D-glucoside 2-O-beta-D-glucuronosyltransferase. This enzyme catalyses the following chemical reaction

Soyasapogenol glucuronosyltransferase is an enzyme with systematic name UDP-D-glucuronate:soyasapogenol 3-O-D-glucuronosyltransferase. This enzyme catalyses the following chemical reaction

UDP-2,3-diacetamido-2,3-dideoxyglucuronic acid 2-epimerase is an enzyme with systematic name 2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronate 2-epimerase. This enzyme catalyses the following chemical reaction

References