Vorticity confinement

Last updated

Vorticity confinement (VC), a physics-based computational fluid dynamics model analogous to shock capturing methods, was invented by Dr. John Steinhoff, professor at the University of Tennessee Space Institute, in the late 1980s [1] to solve vortex dominated flows. It was first formulated to capture concentrated vortices shed from the wings, and later became popular in a wide range of research areas. [2] During the 1990s and 2000s, it became widely used in the field of engineering. [3] [4]

Contents

The method

VC has a basic familiarity to solitary wave approach which is extensively used in many condensed matter physics applications. [5] The effect of VC is to capture the small scale features over as few as 2 grid cells as they convect through the flow. The basic idea is similar to that of compression discontinuity in Eulerian shock capturing methods. The internal structure is maintained thin and so the details of the internal structure may not be important.

Example

Consider 2D Euler equations, modified using the confinement term, F:

The discretized Euler equations with the extra term can be solved on fairly coarse grids, with simple low order accurate numerical methods, but still yield concentrated vortices which convect without spreading. VC has different forms, one of which is VC1. It involves an added dissipation,,to the partial differential equation, which when balanced with inward convection, , produce stable solutions. Another form is termed as VC2 in which dissipation is balanced with nonlinear anti-diffusion to produce stable solitary wave-like solutions.

: Dissipation
: Inward convection for VC1 and nonlinear anti-diffusion for VC2

The main difference between VC1 and VC2 is that in the latter the centroid of the vortex follows the local velocity moment weighted by vorticity. This should provide greater accuracy than VC1 in cases where the convecting field is weak compared to the self-induced velocity of the vortex. One drawback is that VC2 is not as robust as VC1 because while VC1 involves convection like inward propagation of vorticity balanced by an outward second order diffusion, VC2 involves a second order inward propagation of vorticity balanced by 4th order outward dissipation. This approach has been further extended to solve wave equation and is called Wave confinement (WC).

Immersed boundary

To enforce no-slip boundary conditions on immersed surfaces, first, the surface is represented implicitly by a smooth “level set” function, “f”, defined at each grid point. This is the (signed) distance from each grid point to the nearest point on the surface of an object – positive outside, negative inside. Then, at each time step during the solution, velocities in the interior are set to zero. In a computation using VC, this results in a thin vortical region along the surface, which is smooth in the tangential direction, with no “staircase” effects. [6] The important point is that no special logic is required in the “cut” cells, unlike many conventional schemes: only the same VC equations are applied, as in the rest of the grid, but with a different form for F. Also, unlike many conventional immersed surface schemes, which are inviscid because of cell size constraints, there is effectively a no-slip boundary condition, which results in a boundary layer with well-defined total vorticity and which, because of VC, remains thin, even after separation. The method is especially effective for complex configurations with separation from sharp corners. Also, even with constant coefficients, it can approximately treat separation from smooth surfaces. General blunt bodies, which typically shed turbulent vorticity that induces a velocity around an upstream body. It is inconsistent to use body fitted grids as the vorticity convects through a non fitted grid.

Applications

VC is used in many applications including rotor wake computations, computation of wing tip vortices, drag computations for vehicles, flow around urban layouts, smoke/contaminant propagation and special effects. Also, it is used in wave computations for communication purposes.

Related Research Articles

Fluid dynamics Aspects of fluid mechanics involving flow

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Biot–Savart law Important law of classical magnetism

In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law is fundamental to magnetostatics, playing a role similar to that of Coulomb's law in electrostatics. When magnetostatics does not apply, the Biot–Savart law should be replaced by Jefimenko's equations. The law is valid in the magnetostatic approximation, and consistent with both Ampère's circuital law and Gauss's law for magnetism. It is named after Jean-Baptiste Biot and Félix Savart, who discovered this relationship in 1820.

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

Vortex

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

In continuum mechanics, vorticity is a pseudovector field that describes the local spinning motion of a continuum near some point, as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings.

The vorticity equation of fluid dynamics describes evolution of the vorticity ω of a particle of a fluid as it moves with its flow, that is, the local rotation of the fluid . The equation is:

Dynamo theory Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

Computational fluid dynamics Branch of fluid mechanics that uses numerical analysis and data structures to solve and analyze problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

In fluid dynamics, helicity is, under appropriate conditions, an invariant of the Euler equations of fluid flow, having a topological interpretation as a measure of linkage and/or knottedness of vortex lines in the flow. This was first proved by Jean-Jacques Moreau in 1961 and Moffatt derived it in 1969 without the knowledge of Moreau's paper. This helicity invariant is an extension of Woltjer's theorem for magnetic helicity.

In fluid dynamics, the enstrophyE can be interpreted as another type of potential density; or, more concretely, the quantity directly related to the kinetic energy in the flow model that corresponds to dissipation effects in the fluid. It is particularly useful in the study of turbulent flows, and is often identified in the study of thrusters as well as the field of combustion theory.

The Sverdrup balance, or Sverdrup relation, is a theoretical relationship between the wind stress exerted on the surface of the open ocean and the vertically integrated meridional (north-south) transport of ocean water.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

Quantum vortex Quantized flux circulation of some physical quantity

In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov. In 1935 Fritz London published a very closely related work on magnetic flux quantization in superconductors. London's fluxoid can also be viewed as a quantum vortex.

The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil and any two-dimensional bodies including circular cylinders translating in a uniform fluid at a constant speed large enough so that the flow seen in the body-fixed frame is steady and unseparated. The theorem relates the lift generated by an airfoil to the speed of the airfoil through the fluid, the density of the fluid and the circulation around the airfoil. The circulation is defined as the line integral around a closed loop enclosing the airfoil of the component of the velocity of the fluid tangent to the loop. It is named after Martin Kutta and Nikolai Zhukovsky who first developed its key ideas in the early 20th century. Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications.

Vortex lattice method

The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag. The influence of the thickness and viscosity is neglected.

Hydrodynamic stability

In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century. These foundations have given many useful tools to study hydrodynamic stability. These include Reynolds number, the Euler equations, and the Navier–Stokes equations. When studying flow stability it is useful to understand more simplistic systems, e.g. incompressible and inviscid fluids which can then be developed further onto more complex flows. Since the 1980s, more computational methods are being used to model and analyse the more complex flows.

John Steinhoff is a classical physicist, best known for his important contributions to computational fluid dynamics field. He invented a physics based method called vorticity confinement to compute the numerical solution of partial differential equations.

The viscous vortex domains (VVD) method is a mesh-free method of computational fluid dynamics for directly numerically solving 2D Navier-Stokes equations in Lagrange coordinates It doesn't implement any turbulence model and free of arbitrary parameters. The main idea of this method is to present vorticity field with discrete regions (domains), which travel with diffusive velocity relatively to fluid and conserve their circulation. The same approach was used in Diffusion Velocity method of Ogami and Akamatsu, but VVD uses other discrete formulas

In fluid dynamics, the Craik–Leibovich (CL) vortex force describes a forcing of the mean flow through wave–current interaction, specifically between the Stokes drift velocity and the mean-flow vorticity. The CL vortex force is used to explain the generation of Langmuir circulations by an instability mechanism. The CL vortex-force mechanism was derived and studied by Sidney Leibovich and Alex D.D. Craik in the 1970s and 80s, in their studies of Langmuir circulations.

In fluid dynamics, Kerr–Dold vortex is an exact solution of Navier–Stokes equations, which represents steady periodic vortices superposed on the stagnation point flow. The solution was discovered by Oliver S. Kerr and John W. Dold in 1994. These steady solutions exist as a result of a balance between vortex stretching by the extensional flow and viscous dissipation, which are similar to Burgers vortex. These vortices were observed experimentally in a four-roll mill apparatus by Lagnado and L. Gary Leal.

References

  1. John Steinhoff (1994). "Vorticity Confinement: A New Technique for Computing Vortex Dominated Flows". Frontiers of Computational Fluid Dynamics. John Wiley & Sons. ISBN   978-0-471-95334-0.
  2. Hu, Guangchu; Grossman, Bernard (2006-08-01). "The computation of massively separated flows using compressible vorticity confinement methods". Computers & Fluids. 35 (7): 781–789. doi:10.1016/j.compfluid.2006.03.001. ISSN   0045-7930.
  3. Wenren, Y.; Fan, M.; Dietz, W.; Hu, G.; Braun, C.; Steinhoff, J.; Grossman, B. (2001-01-08). "Efficient Eulerian computation of realistic rotorcraft flows using Vorticity Confinement - A survey of recent results". 39th Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.2001-996.
  4. Murayama, Mitsuhiro; Nakahashi, Kazuhiro; Obayashi, Shigeru (2001-01-08). "Numerical simulation of vortical flows using vorticity confinement coupled with unstructured grid". 39th Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.2001-606.
  5. Bishop, A.R.; Krumhansl, J.A.; Trullinger, S.E. (1980). "Solitons in condensed matter: A paradigm". Physica D: Nonlinear Phenomena. 1 (1): 1–44. doi:10.1016/0167-2789(80)90003-2. ISSN   0167-2789.
  6. Wenren, Y.; Fan, M.; Wang, L.; Xiao, M.; Steinhoff, J. (2003). "Application of Vorticity Confinement to Prediction of the Flow over Complex Bodies". AIAA Journal. 41 (5): 809–816. doi:10.2514/2.2042. ISSN   0001-1452.