WAIS Divide

Last updated
WAIS Divide Camp
Camp
Antarctica WAIS Divide Field Camp 06.jpg
WAIS Divide Field Camp in 2012
WAISDivideReg.jpeg
Detailed Map of the WAIS Divide Region
Coordinates: 79°28′05″S112°05′10″W / 79.468°S 112.086°W / -79.468; -112.086
CountryFlag of the United States.svg  United States
Location in AntarcticaWAIS Divide
Antarctica
Administered by National Science Foundation
Established2005 (2005)
Elevation
1,797 m (5,896 ft)
TypeSeasonal
StatusOperational
WAIS Divide airfield
LC-130 WAIS Divide Antarctica.jpg
New York Air National Guard LC-130H being unloaded by a Caterpillar loader at the WAIS Divide field camp.
Summary
Airport typePrivate
Location West Antarctic Ice Sheet
Opened2005 (2005)
Elevation  AMSL 5,895 ft / 1,797 m
Coordinates 79°28′25″S112°04′02″W / 79.473695°S 112.067194°W / -79.473695; -112.067194
Map
Antarctica location map.svg
Airplane silhouette.svg
WAIS Divide airfield
Location of airfield in Antarctica
WAIS Divide
Runways
Direction LengthSurface
ftm
11,4803,500Snow

The WAIS Divide is the ice flow divide on the West Antarctic Ice Sheet (WAIS) which is a linear boundary that separates the region where the ice flows to the Ross Sea, from the region where the ice flows to the Weddell Sea. It is similar to a continental hydrographic divide.

Contents

Ice core project

The WAIS Divide ice core project (West Antarctic Ice Sheet Divide ice core project) investigated past climate changes, ice sheet dynamics and cryobiology. The project was completed by the United States Antarctic Program (USAP) and was funded by the National Science Foundation (NSF). The focus of the project was to develop records spanning the last ~ 80,000 years of the concentration of greenhouse gases in the atmosphere and Antarctic climate, and to do this with the highest possible time resolution. The project is best known for producing records of atmospheric carbon dioxide and methane with high time resolution and dating accuracy. This was accomplished by collecting and analyzing an ice core from a site named WAIS Divide (79.468° S 112.086° W) that is on the WAIS ice flow divide. This can cause confusion because the name "WAIS Divide" can refer to the WAIS Divide ice flow divide or the WAIS Divide drill site that is at a single spot on the ice flow divide. [1]

Project history

The drilling facilities at the WAIS Divide field camp Antarctica WAIS Divide Field Camp 16.jpg
The drilling facilities at the WAIS Divide field camp

Site selection started in 2000 with the goal of finding the best place meeting the following requirements.

Site preparation started in the 2005/2006 season with the construction of the skiway, and a steel arch shelter for drilling and core processing. Camp logistics was provided by Raytheon Polar Services Company and the air transport by the New York Air National Guard using LC-130 aircraft. The deep coring started in the 2006/2007 season using the Deep Ice Sheet Coring (DISC) drill developed and operated by the Ice Drilling Design and Operations group at the University of Wisconsin, Madison. The coring was stopped in December 2011 at a depth of 3,405 m, which is ~ 50 m above the bottom of the ice sheet. The last 50 m of ice was left in place to provide a barrier between the borehole and the pristine aqueous basal environment. The ice at the bottom of the hole fell as snow 67,748 years ago. In the 2012-2013 season additional core was collected in zones of high scientific interest. This was done by drilling through the side of the main bore hole and coring along a path nearly parallel to the main core. [1]

The ice core was transported to the National Ice Core Laboratory in Denver, Colorado where it was sampled and portions were distributed to 33 institutions for analysis. The analysis included the physical, chemical and isotopic properties of the gases trapped in the ice, the soluble and insoluble material in the melted ice, and the water from the melted ice. [1]

Results

Camp at the WAIS Divide Site WAIS-Flag-and-Camp.jpeg
Camp at the WAIS Divide Site

The core was dated using two methods. The top was dated by counting annual layers to an age of 31,200 years ago. [3] The bottom was dated using stratigraphic methods to an age of 67,748, years at the bottom of the core. [4] The dating was more accurate than other Antarctic ice cores and enables a better understanding of the causes of previous climate changes. This information helps improve predictions of future climate changes.

The project developed information on:

Paleoceanography will publish a special edition that includes all WAIS Divide related AGU publications as April 2016.

Additional information, including a complete list of all the publications related to the project, is available at: http://waisdivide.unh.edu. [1]

Outreach

Project leadership

Leadership for the project was provided by the following people:

See also

Related Research Articles

<span class="mw-page-title-main">Ross Sea</span> Deep bay of the Southern Ocean in Antarctica

The Ross Sea is a deep bay of the Southern Ocean in Antarctica, between Victoria Land and Marie Byrd Land and within the Ross Embayment, and is the southernmost sea on Earth. It derives its name from the British explorer James Clark Ross who visited this area in 1841. To the west of the sea lies Ross Island and Victoria Land, to the east Roosevelt Island and Edward VII Peninsula in Marie Byrd Land, while the southernmost part is covered by the Ross Ice Shelf, and is about 200 miles (320 km) from the South Pole. Its boundaries and area have been defined by the New Zealand National Institute of Water and Atmospheric Research as having an area of 637,000 square kilometres (246,000 sq mi).

<span class="mw-page-title-main">Ice core</span> Cylindrical sample drilled from an ice sheet

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old.

<span class="mw-page-title-main">West Antarctic Ice Sheet</span> Segment of Antarctic ice sheet

The West Antarctic Ice Sheet (WAIS) is the segment of the continental ice sheet that covers West Antarctica, the portion of Antarctica on the side of the Transantarctic Mountains that lies in the Western Hemisphere. It is classified as a marine-based ice sheet, meaning that its bed lies well below sea level and its edges flow into floating ice shelves. The WAIS is bounded by the Ross Ice Shelf, the Ronne Ice Shelf, and outlet glaciers that drain into the Amundsen Sea.

<span class="mw-page-title-main">Polar ice cap</span> High-latitude region of an astronomical body with major parts covered in ice

A polar ice cap or polar cap is a high-latitude region of a planet, dwarf planet, or natural satellite that is covered in ice.

<span class="mw-page-title-main">Marie Byrd Land</span> Unclaimed West Antarctic region

Marie Byrd Land (MBL) is an unclaimed region of Antarctica. With an area of 1,610,000 km2 (620,000 sq mi), it is the largest unclaimed territory on Earth. It was named after the wife of American naval officer Richard E. Byrd, who explored the region in the early 20th century.

<span class="mw-page-title-main">Antarctic ice sheet</span> Earths southern polar ice cap

The Antarctic ice sheet is a continental glacier covering 98% of the Antarctic continent, with an area of 14 million square kilometres and an average thickness of over 2 kilometres (1.2 mi). It is the largest of Earth's two current ice sheets, containing 26.5 million cubic kilometres of ice, which is equivalent to 61% of all fresh water on Earth. Its surface is nearly continuous, and the only ice-free areas on the continent are the dry valleys, nunataks of the Antarctic mountain ranges, and sparse coastal bedrock. However, it is often subdivided into East Antarctic ice sheet (EAIS), West Antarctic ice sheet (WAIS), and Antarctic Peninsula (AP), due to the large differences in topography, ice flow, and glacier mass balance between the three regions.

<span class="mw-page-title-main">Antarctic oscillation</span> Climatic cycle over the Southern Ocean

The Antarctic oscillation, also known as the Southern Annular Mode (SAM), is a low-frequency mode of atmospheric variability of the southern hemisphere that is defined as a belt of strong westerly winds or low pressure surrounding Antarctica which moves north or south as its mode of variability.

<span class="mw-page-title-main">Mount Takahe</span> Shield volcano in the Antarctic continent

Mount Takahe is a 3,460-metre-high (11,350 ft) snow-covered shield volcano in Marie Byrd Land, Antarctica, 200 kilometres (120 mi) from the Amundsen Sea. It is a c. 30-kilometre-wide (19 mi) mountain with parasitic vents and a caldera up to 8 kilometres (5 mi) wide. Most of the volcano is formed by trachytic lava flows, but hyaloclastite is also found. Snow, ice, and glaciers cover most of Mount Takahe. With a volume of 780 km3 (200 cu mi), it is a massive volcano; the parts of the edifice that are buried underneath the West Antarctic Ice Sheet are probably even larger. It is part of the West Antarctic Rift System along with 18 other known volcanoes.

<span class="mw-page-title-main">European Project for Ice Coring in Antarctica</span> Research project

The European Project for Ice Coring in Antarctica (EPICA) is a multinational European project for deep ice core drilling in Antarctica. Its main objective is to obtain full documentation of the climatic and atmospheric record archived in Antarctic ice by drilling and analyzing two ice cores and comparing these with their Greenland counterparts (GRIP and GISP). Evaluation of these records will provide information about the natural climate variability and mechanisms of rapid climatic changes during the last glacial epoch.

<span class="mw-page-title-main">Greenland ice core project</span> Project to drill through Greenland ice sheet

The Greenland Ice Core Project (GRIP) was a research project organized through the European Science Foundation (ESF). The project ran from 1989 to 1995, with drilling seasons from 1990 to 1992. In 1988, the project was accepted as an ESF-associated program, and the fieldwork was started in Greenland in the summer of 1989.

<span class="mw-page-title-main">Abrupt climate change</span> Form of climate change

An abrupt climate change occurs when the climate system is forced to transition at a rate that is determined by the climate system energy-balance. The transition rate is more rapid than the rate of change of the external forcing, though it may include sudden forcing events such as meteorite impacts. Abrupt climate change therefore is a variation beyond the variability of a climate. Past events include the end of the Carboniferous Rainforest Collapse, Younger Dryas, Dansgaard–Oeschger events, Heinrich events and possibly also the Paleocene–Eocene Thermal Maximum. The term is also used within the context of climate change to describe sudden climate change that is detectable over the time-scale of a human lifetime. Such a sudden climate change can be the result of feedback loops within the climate system or tipping points in the climate system.

<span class="mw-page-title-main">Dome F</span> Antarctic base in Queen Maud Land

Dome Fuji, also called Dome F or Valkyrie Dome, is an Antarctic base located in the eastern part of Queen Maud Land. With an altitude of 3,810 metres (12,500 ft) above sea level, it is the second-highest summit or ice dome of the East Antarctic Ice Sheet and represents an ice divide. Dome F is the site of Dome Fuji Station, a research station operated by Japan.

Jean-Robert Petit is a French scientist. He studied chemistry and physics at the University of Grenoble and received a PhD in 1984 in paleoclimatology on the study of the aeolian dust record from Antarctic ice cores.

An ice divide is the boundary on an ice sheet, ice cap or glacier separating opposing flow directions of ice, analogous to a water divide. Ice divides are important for geochronological investigations that use ice cores, since such coring is typically made at highest point of an ice sheet dome to avoid disturbances arising from horizontal ice movement. Ice divides are used for looking at how the atmosphere varied over time. Coring at dome peaks increases precision of reconstructions as it is the place where horizontal motion is at its least. The Raymond Effect operates at ice divides, creating anticlines in the radar-detected isochrones, allowing greater capture of older ice when coring.

Throughout Earth's climate history (Paleoclimate) its climate has fluctuated between two primary states: greenhouse and icehouse Earth. Both climate states last for millions of years and should not be confused with the much smaller glacial and interglacial periods, which occur as alternating phases within an icehouse period and tend to last less than one million years. There are five known icehouse periods in Earth's climate history, namely the Huronian, Cryogenian, Andean-Saharan, Late Paleozoic and Late Cenozoic glaciations.

<span class="mw-page-title-main">Siple Dome</span> Geographic feature in Antarctica

Siple Dome is an ice dome approximately 100 km wide and 100 km long, located 130 km east of Siple Coast in Antarctica. Charles Bentley and Robert Thomas established a "strain rosette" on this feature to determine ice movement in 1973–74. They referred to the feature as Siple Dome because of its proximity to Siple Coast.

<span class="mw-page-title-main">Global surface temperature</span> Average temperature of the Earths surface

Global surface temperature (GST) is the average temperature of Earth's surface. More precisely, it is the weighted average of the temperatures over the ocean and land. The former is also called sea surface temperature and the latter is called surface air temperature. Temperature data comes mainly from weather stations and satellites. To estimate data in the distant past, proxy data can be used for example from tree rings, corals, and ice cores. Observing the rising GST over time is one of the many lines of evidence supporting the scientific consensus on climate change, which is that human activities are causing climate change. Alternative terms for the same thing are global mean surface temperature (GMST) or global average surface temperature.

<span class="mw-page-title-main">Climate change in Antarctica</span> Impacts of climate change on Antarctica

Climate change caused by greenhouse gas emissions from human activities occurs everywhere on Earth, and while Antarctica is less vulnerable to it than any other continent, climate change in Antarctica has been observed. Since 1959, there has been an average temperature increase of >0.05 °C/decade since 1957 across the continent, although it had been uneven. West Antarctica warmed by over 0.1 °C/decade from the 1950s to the 2000s, and the exposed Antarctic Peninsula has warmed by 3 °C (5.4 °F) since the mid-20th century. The colder, stabler East Antarctica had been experiencing cooling until the 2000s. Around Antarctica, the Southern Ocean has absorbed more oceanic heat than any other ocean, and has seen strong warming at depths below 2,000 m (6,600 ft). Around the West Antarctic, the ocean has warmed by 1 °C (1.8 °F) since 1955.

Jérôme Chappellaz is a French glaciologist, geochemist and paleoclimatologist who is director of the French Polar Institute. A senior researcher at France's National Center for Scientific Research (CNRS), he is a co-founder and chairman of the Ice Memory Foundation.

References

  1. 1 2 3 4 "West Antarctic Ice Sheet Divide Ice Core". WAIS Divide. Desert Research Institute and University of New Hampshire. Retrieved August 17, 2018.
  2. Morse, D.L., Blankenship, D.D., Waddington, E.D. and Neumann, T.A. (2002) A site for deep ice coring in West Antarctica: Results from aerogeophysical surveys and thermal-kinematic modeling; Annals of Glaciology, 35, p. 36 - 44; doi : 10.3189/172756402781816636
  3. Sigl, M., Ferris, D., Fudge, T.J., Winstrup, M., Cole-Dai, J., McConnell, J.R., Taylor, K.C., Welten, K.C., Woodruff, T.E., Adolphi, F., Brook, E.J., Bisiaux, M., Buizert, C., Caffee, M.W., Dunbar, N., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O.J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D.R., Rhodes, R.H. and Sowers, T.A. (2016) The WAIS Divide deep ice core WD2014 chronology - Part 2: Annual-layer counting (0-31 ka BP); Climate of the Past, 12, p. 769 - 786; doi : 10.5194/cp-12-769-2016
  4. Buizert, C., Cuffey, K.M., Severinghaus, J.P., Baggenstos, D., Fudge, T.J., Steig, E.J., Markle, B.R., Winstrup, M., Rhodes, R.H., Brook, E.J., Sowers, T.A., Clow, G.D., Cheng, H., Edwards, R.L., Sigl, M., McConnell, J.R. and Taylor, K.C. (2015) The WAIS Divide deep ice core WD2014 chronology - Part 1: Methane synchronization (68-31 ka BP) and the gas age-ice age difference; Climate of the Past, 11, p. 153 - 173; doi : 10.5194/cp-11-153-2015
  5. WAIS Divide Project Members (2015) Precise interpolar phasing of abrupt climate change during the last ice age; Nature, 520, p. 661 - 665; doi : 10.1038/nature14401
  6. WAIS Divide Project Members (2013). "Onset of deglacial warming in West Antarctica driven by local orbital forcing". Nature. 500 (7463): 440–444. Bibcode:2013Natur.500..440W. doi:10.1038/nature12376. PMID   23945585. S2CID   4417100 . Retrieved 11 Oct 2023.
  7. Marcott, S.A.; Bauska, T.K.; Buizert, C.; Steig, E.J.; Rosen, J.L.; Cuffey, K.M.; Fudge, T.J.; Severinghaus, J.P.; Ahn, J.; Kalk, M.; McConnell, J.R.; Sowers, T.; Taylor, K.C.; White, J.W.C.; Brook, E.J. (2014). "Centennial-scale changes in the global carbon cycle during the last deglaciation". Nature. 514 (7524): 616–619. Bibcode:2014Natur.514..616M. doi:10.1038/nature13799. PMID   25355363. S2CID   4401982 . Retrieved 11 Oct 2023.
  8. Rhodes, R.H., Brook, E.J., Chiang, J.C.H., Blunier, T., Maselli, O.J., McConnell, J.M., Romanini, D. and Severinghaus, J.P. (2015) Enhanced tropical methane production in response to iceberg discharge in the North Atlantic; Science, 348(6238), p. 1016 - 1019; doi : 10.1126/science.1262005

79°28′03″S112°05′11″W / 79.467472°S 112.086389°W / -79.467472; -112.086389