Zinc cycle

Last updated
Zinc fluxes between the lithosphere and biosphere, through basins in soil, biomass, water systems, and industry. Estimated fluxes are shown as labeled arrows in Gg/year. Global Zinc Cycle.jpg
Zinc fluxes between the lithosphere and biosphere, through basins in soil, biomass, water systems, and industry. Estimated fluxes are shown as labeled arrows in Gg/year.

The zinc cycle is a biogeochemical cycle that transports zinc through the lithosphere, hydrosphere, and biosphere.

Contents

Natural Cycle

Lithosphere

Zinc-containing minerals in the Earth's crust exist primarily as sulfides, such as sphalerite and wurtzite, and carbonates such as smithsonite. Zinc minerals enter the terrestrial environment through weathering and human activities. [1] Zinc is used by plants and other organisms, and then enters aquatic systems where it either settles into sediments or eventually enter the oceans.

Oceans

Zinc is a marine micronutrient that tends to be in higher concentration in the deep ocean and is transformed into organic zinc which enters the food chain by diatom blooms during upwelling events in the Southern Ocean. [2] Zinc settles to the ocean floor and is returned to the mantle from the subduction of marine sediments. [3]

The zinc cycle has historically been characterized by episodic changes in zinc deposits. Major global events such as the formation or breakup of supercontinents and periods of significant volcanic activity tend to create new deposits of zinc in the lithosphere. In between these events, zinc tends to cycle through the biosphere at a lower rate of change. [4]

Anthropogenic influences

The anthropogenic effect on the zinc cycle has been significant. Zinc is mined as a mineral resource used by humans at a rate of 9800 Gg/yr [1] for use in metal alloys including brass and nickel silver, for galvanizing steel, and in zinc compounds such as zinc oxide. Half of zinc waste from industrial use is from tailings and slag; the rest comes from the oxidation of zinc metals and landfill waste. Scientists estimate that 85% of all zinc that has been mined for human use is still in use; therefore, the amount of zinc waste going into landfills is expected to increase. [5]

Zinc is a trace nutrient present in fertilizers, which contribute to 21 Gg/yr in agricultural cycling. Commercial fertilizers contain as much as 36% zinc. [6] Only a small portion of the zinc that enters the agricultural system is removed in crops that are consumed by humans; a significant portion is recycled in manure and compost, and accumulates in the soil. [7]

Related Research Articles

<span class="mw-page-title-main">Geomicrobiology</span> Intersection of microbiology and geology

Geomicrobiology is the scientific field at the intersection of geology and microbiology and is a major subfield of geobiology. It concerns the role of microbes on geological and geochemical processes and effects of minerals and metals to microbial growth, activity and survival. Such interactions occur in the geosphere, the atmosphere and the hydrosphere. Geomicrobiology studies microorganisms that are driving the Earth's biogeochemical cycles, mediating mineral precipitation and dissolution, and sorbing and concentrating metals. The applications include for example bioremediation, mining, climate change mitigation and public drinking water supplies.

<span class="mw-page-title-main">Biogeochemical cycle</span> Chemical transfer pathway between Earths biological and non-biological parts

A biogeochemical cycle is the pathway by which a chemical substance cycles the biotic and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, hydrosphere and lithosphere. There are biogeochemical cycles for chemical elements, such as for calcium, carbon, hydrogen, mercury, nitrogen, oxygen, phosphorus, selenium, iron and sulfur, as well as molecular cycles, such as for water and silica. There are also macroscopic cycles, such as the rock cycle, and human-induced cycles for synthetic compounds such as polychlorinated biphenyls (PCBs). In some cycles there are reservoirs where a substance can remain or be sequestered for a long period of time.

<span class="mw-page-title-main">Oxygen cycle</span> Biogeochemical cycle of oxygen

Oxygen cycle refers to the movement of oxygen through the atmosphere (air), biosphere (plants and animals) and the lithosphere (the Earth’s crust). The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. The word oxygen in the literature typically refers to the most common oxygen allotrope, elemental/diatomic oxygen (O2), as it is a common product or reactant of many biogeochemical redox reactions within the cycle. Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O2 production) or sink (O2 consumption).

<span class="mw-page-title-main">Biogeochemistry</span> Study of chemical cycles of the earth that are either driven by or influence biological activity

Biogeochemistry is the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that govern the composition of the natural environment. In particular, biogeochemistry is the study of biogeochemical cycles, the cycles of chemical elements such as carbon and nitrogen, and their interactions with and incorporation into living things transported through earth scale biological systems in space and time. The field focuses on chemical cycles which are either driven by or influence biological activity. Particular emphasis is placed on the study of carbon, nitrogen, sulfur, iron, and phosphorus cycles. Biogeochemistry is a systems science closely related to systems ecology.

<span class="mw-page-title-main">Iron cycle</span>

The iron cycle (Fe) is the biogeochemical cycle of iron through the atmosphere, hydrosphere, biosphere and lithosphere. While Fe is highly abundant in the Earth's crust, it is less common in oxygenated surface waters. Iron is a key micronutrient in primary productivity, and a limiting nutrient in the Southern ocean, eastern equatorial Pacific, and the subarctic Pacific referred to as High-Nutrient, Low-Chlorophyll (HNLC) regions of the ocean.

High-nutrient, low-chlorophyll (HNLC) regions are regions of the ocean where the abundance of phytoplankton is low and fairly constant despite the availability of macronutrients. Phytoplankton rely on a suite of nutrients for cellular function. Macronutrients are generally available in higher quantities in surface ocean waters, and are the typical components of common garden fertilizers. Micronutrients are generally available in lower quantities and include trace metals. Macronutrients are typically available in millimolar concentrations, while micronutrients are generally available in micro- to nanomolar concentrations. In general, nitrogen tends to be a limiting ocean nutrient, but in HNLC regions it is never significantly depleted. Instead, these regions tend to be limited by low concentrations of metabolizable iron. Iron is a critical phytoplankton micronutrient necessary for enzyme catalysis and electron transport.

<span class="mw-page-title-main">Sulfur cycle</span> Biogeochemical cycle of sulfur

The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes. Steps of the sulfur cycle are:

<span class="mw-page-title-main">Phosphorus cycle</span> Biogeochemical movement

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems.

<span class="mw-page-title-main">Marine biogeochemical cycles</span>

Marine biogeochemical cycles are biogeochemical cycles that occur within marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. These biogeochemical cycles are the pathways chemical substances and elements move through within the marine environment. In addition, substances and elements can be imported into or exported from the marine environment. These imports and exports can occur as exchanges with the atmosphere above, the ocean floor below, or as runoff from the land.

<span class="mw-page-title-main">Silica cycle</span> Biogeochemical cycle

The silica cycle is the biogeochemical cycle in which biogenic silica is transported between the Earth's systems. Silicon is considered a bioessential element and is one of the most abundant elements on Earth. The silica cycle has significant overlap with the carbon cycle and plays an important role in the sequestration of carbon through continental weathering, biogenic export and burial as oozes on geologic timescales.

The aluminum cycle is the biogeochemical cycle by which aluminum is moved through the environment by natural and anthropogenic processes.

<span class="mw-page-title-main">Copper cycle</span>

The copper cycle is the biogeochemical cycle of natural and anthropogenic exchanges of copper between reservoirs in the hydrosphere, atmosphere, biosphere, and lithosphere. Human mining and extraction activities have exerted large influence on the copper cycle.

<span class="mw-page-title-main">Boron cycle</span> The biogeochemical cycle of boron

The boron cycle is the biogeochemical cycle of boron through the atmosphere, lithosphere, biosphere, and hydrosphere.

<span class="mw-page-title-main">Arsenic cycle</span>

The arsenic (As) cycle is the biogeochemical cycle of natural and anthropogenic exchanges of arsenic terms through the atmosphere, lithosphere, pedosphere, hydrosphere, and biosphere. Although arsenic is naturally abundant in the Earth's crust, long-term exposure and high concentrations of arsenic can be detrimental to human health.

<span class="mw-page-title-main">Chromium cycle</span> Biogeochemical cycle

The chromium cycle is the biogeochemical cycle of chromium through the atmosphere, hydrosphere, biosphere and lithosphere.

<span class="mw-page-title-main">Gold cycle</span>

The gold cycle is the biogeochemical cycling of gold through the lithosphere, hydrosphere, atmosphere, and biosphere. Gold is a noble transition metal that is highly mobile in the environment and subject to biogeochemical cycling, driven largely by microorganisms. Gold undergoes processes of solubilization, stabilization, bioreduction, biomineralization, aggregation, and ligand utilization throughout its cycle. These processes are influenced by various microbial populations and cycling of other elements such as carbon, nitrogen, and sulfur. Gold exists in several forms in the Earth's surface environment including Au(I/III)-complexes, nanoparticles, and placer gold particles. The gold biogeochemical cycle is highly complex and strongly intertwined with cycling of other metals including silver, copper, iron, manganese, arsenic, and mercury. Gold is important in the biotech field for applications such as mineral exploration, processing and remediation, development of biosensors and drug delivery systems, industrial catalysts, and for recovery of gold from electronic waste.

<span class="mw-page-title-main">Iodine cycle</span>

The iodine cycle is a biogeochemical cycle that primarily consists of natural and biological processes that exchange iodine through the lithosphere, hydrosphere, and atmosphere. Iodine exists in many forms, but in the environment, it generally has an oxidation state of -1, 0, or +5.

<span class="mw-page-title-main">Lead cycle</span>

The lead cycle is the biogeochemical cycle of lead through the atmosphere, lithosphere, biosphere, and hydrosphere, which has been influenced by anthropogenic activities.

<span class="mw-page-title-main">Potassium cycle</span>

The potassium (K) cycle is the biogeochemical cycle that describes the movement of potassium throughout the Earth’s lithosphere, biosphere, atmosphere, and hydrosphere.

<span class="mw-page-title-main">Fluorine cycle</span> Biogeochemical cycle

The fluorine cycle is the series of biogeochemical processes through which fluorine moves through the lithosphere, hydrosphere, atmosphere, and biosphere. Fluorine originates from the Earth’s crust, and its cycling between various sources and sinks is modulated by a variety of natural and anthropogenic processes.

References

  1. 1 2 3 Rauch, Jason N.; Pacyna, Jozef M. (2009). "Earth's global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles". Global Biogeochemical Cycles. 23 (2). Bibcode:2009GBioC..23.2001R. doi: 10.1029/2008GB003376 . ISSN   1944-9224.
  2. Conway, Tim M.; John, Seth G. (2014). "The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean". Global Biogeochemical Cycles. 28 (10): 1111–1128. Bibcode:2014GBioC..28.1111C. doi: 10.1002/2014gb004862 . ISSN   0886-6236.
  3. Plank, Terry; Langmuir, Charles H. (1998). "The chemical composition of subducting sediment and its consequences for the crust and mantle". Chemical Geology. 145 (3–4): 325–394. Bibcode:1998ChGeo.145..325P. doi: 10.1016/S0009-2541(97)00150-2 . ISSN   0009-2541.
  4. Thiart, Christien; de Wit, Maarten J. (2006), "Fingerprinting the metal endowment of early continental crust to test for secular changes in global mineralization", Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits, Geological Society of America, doi:10.1130/2006.1198(03), ISBN   978-0-8137-1198-0
  5. Gordon, R. B.; Lifset, R. J.; Bertram, M.; Reck, B.; Graedel, T. E.; Spatari, S. (2004). "Where is all the zinc going: The stocks and flows project, Part 2". JOM. 56 (1): 24–29. Bibcode:2004JOM....56a..24G. doi:10.1007/s11837-004-0266-4. ISSN   1543-1851. S2CID   129908307.
  6. Franklin, R. E.; Duis, Lori; Brown, Richard; Kemp, Thomas (2005). "Trace Element Content of Selected Fertilizers and Micronutrient Source Materials". Communications in Soil Science and Plant Analysis. 36 (11–12): 1591–1609. doi:10.1081/CSS-200059091. ISSN   0010-3624. S2CID   94917076.
  7. Moolenaar, Simon W. (1999). "Heavy-Metal Balances, Part II: Management of Cadmium, Copper, Lead, and Zinc in European Agro-Ecosystems". Journal of Industrial Ecology. 3 (1): 41–53. doi:10.1162/108819899569386. ISSN   1530-9290. S2CID   129280091.