Nifoxipam

Last updated
Nifoxipam
Nifoxipam.svg
Nifoxipam ball-and-stick model.png
Legal status
Legal status
Identifiers
  • 5-(2-fluorophenyl)-3-hydroxy-7-nitro-2,3-dihydro-1H-1,4-benzodiazepin-2-one
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C15H10FN3O4
Molar mass 315.260 g·mol−1
3D model (JSmol)
  • O=C1C(O)N=C(C2=CC=CC=C2F)C3=CC([N+]([O-])=O)=CC=C3N1
  • InChI=1S/C15H10FN3O4/c16-11-4-2-1-3-9(11)13-10-7-8(19(22)23)5-6-12(10)17-14(20)15(21)18-13/h1-7,15,21H,(H,17,20)
  • Key:UHFIFTRHLBAWGY-UHFFFAOYSA-N

Nifoxipam (3-hydroxydesmethylflunitrazepam, DP 370) is a benzodiazepine that is a minor metabolite of flunitrazepam and has been sold online as a designer drug. [1] [2] [3] [4] [5] [6] [7] [8] [9]

Nifoxipam produces strong tranquillising and sleep-prolonging effects and has much lower toxicity compared to lormetazepam and flunitrazepam in mice. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Flunitrazepam</span> Benzodiazepine sedative

Flunitrazepam, also known as Rohypnol among other names, is a benzodiazepine used to treat severe insomnia and assist with anesthesia. As with other hypnotics, flunitrazepam has been advised to be prescribed only for short-term use or by those with chronic insomnia on an occasional basis.

<span class="mw-page-title-main">Nitrazepam</span> Benzodiazepine sedative

Nitrazepam, sold under the brand name Mogadon among others, is a hypnotic drug of the benzodiazepine class used for short-term relief from severe, disabling anxiety and insomnia. It also has sedative (calming) properties, as well as amnestic, anticonvulsant, and skeletal muscle relaxant effects.

Thailand's Psychotropic Substances Act is a law designed to regulate certain mind-altering drugs. According to the Office of the Narcotics Control Board, "The Act directly resulted from the Convention on Psychotropic Substances 1971 of which Thailand is a party." The Act divides psychotropic drugs into four Schedules. Offenses involving Schedule I and II drugs carry heavier penalties than those involving Schedule III and IV drugs. Note that this statute does not regulate most opioids, cocaine, or some amphetamines. The vast majority of narcotic painkillers, along with cocaine and most amphetamines are regulated under the Narcotics Act.

<i>Controlled Drugs and Substances Act</i> Canadian federal drug regulation act

The Controlled Drugs and Substances Act is Canada's federal drug control statute. Passed in 1996 under Prime Minister Jean Chrétien's government, it repeals the Narcotic Control Act and Parts III and IV of the Food and Drugs Act, and establishes eight Schedules of controlled substances and two Classes of precursors. It provides that "The Governor in Council may, by order, amend any of Schedules I to VIII by adding to them or deleting from them any item or portion of an item, where the Governor in Council deems the amendment to be necessary in the public interest."

<span class="mw-page-title-main">Nimetazepam</span> Benzodiazepine medication

Nimetazepam is an intermediate-acting hypnotic drug which is a benzodiazepine derivative. It was first synthesized by a team at Hoffmann-La Roche in 1964. It possesses powerful hypnotic, anxiolytic, sedative, and skeletal muscle relaxant properties. Nimetazepam is also a particularly potent anticonvulsant. It is marketed in 5 mg tablets known as Erimin, which is the brand name manufactured and marketed by the large Japanese corporation Sumitomo. Japan is the sole manufacturer of nimetazepam in the world. Outside of Japan, Erimin is available in much of East and Southeast Asia and was widely prescribed for the short-term treatment of severe insomnia in patients who have difficulty falling asleep or maintaining sleep. Sumitomo has ceased manufacturing Erimin since November 2015. It is still available as a generic drug or as Lavol.

<span class="mw-page-title-main">Delorazepam</span> Benzodiazepine medication

Delorazepam, also known as chlordesmethyldiazepam and nordiclazepam, is a drug which is a benzodiazepine and a derivative of desmethyldiazepam. It is marketed in Italy, where it is available under the trade name EN and Dadumir. Delorazepam (chlordesmethyldiazepam) is also an active metabolite of the benzodiazepine drugs diclazepam and cloxazolam. Adverse effects may include hangover type effects, drowsiness, behavioural impairments and short-term memory impairments. Similar to other benzodiazepines delorazepam has anxiolytic, skeletal muscle relaxant, hypnotic and anticonvulsant properties.

<span class="mw-page-title-main">Flutoprazepam</span> Benzodiazepam

Flutoprazepam (Restas) is a drug which is a benzodiazepine. It was patented in Japan by Sumitomo in 1972 and its medical use remains mostly confined to that country. Its muscle relaxant properties are approximately equivalent to those of diazepam - however, it has more powerful sedative, hypnotic, anxiolytic and anticonvulsant effects and is around four times more potent by weight compared to diazepam. It is longer acting than diazepam due to its long-acting active metabolites, which contribute significantly to its effects. Its principal active metabolite is n-desalkylflurazepam, also known as norflurazepam, which is also a principal metabolite of flurazepam.

<span class="mw-page-title-main">Meclonazepam</span> Chemical compound

Meclonazepam ((S)-3-methylclonazepam) was discovered by a team at Hoffmann-La Roche in the 1970s and is a drug which is a benzodiazepine derivative similar in structure to clonazepam. It has sedative and anxiolytic actions like those of other benzodiazepines, and also has anti-parasitic effects against the parasitic worm Schistosoma mansoni.

<span class="mw-page-title-main">Pyrazolam</span> Benzodiazepine

Pyrazolam (SH-I-04) is a benzodiazepine derivative originally developed by a team led by Leo Sternbach at Hoffman-La Roche in the 1970s. It has since been "rediscovered" and sold as a designer drug since 2012.

<span class="mw-page-title-main">Diclazepam</span> Benzodiazepine medication

Diclazepam (Ro5-3448), also known as chlorodiazepam and 2'-chloro-diazepam, is a benzodiazepine and functional analog of diazepam. It was first synthesized by Leo Sternbach and his team at Hoffman-La Roche in 1960. It is not currently approved for use as a medication, but rather sold as an unscheduled substance. Efficacy and safety have not been tested in humans.

<span class="mw-page-title-main">Flubromazepam</span> Benzodiazepine designer drug

Flubromazepam is a benzodiazepine derivative which was first synthesized in 1960, but was never marketed and did not receive any further attention or study until late 2012 when it appeared on the grey market as a novel designer drug.

<span class="mw-page-title-main">3-Hydroxyphenazepam</span> Benzodiazepine medication

3-Hydroxyphenazepam is a benzodiazepine with hypnotic, sedative, anxiolytic, and anticonvulsant properties. It is an active metabolite of phenazepam, as well as the active metabolite of the benzodiazepine prodrug cinazepam. Relative to phenazepam, 3-hydroxyphenazepam has diminished myorelaxant properties, but is about equivalent in most other regards. Like other benzodiazepines, 3-hydroxyphenazepam behaves as a positive allosteric modulator of the benzodiazepine site of the GABAA receptor with an EC50 value of 10.3 nM. It has been sold online as a designer drug.

<span class="mw-page-title-main">Clonazolam</span> Benzodiazepine derivative research chemical

Clonazolam is a drug of the triazolobenzodiazepine (TBZD) class, which are benzodiazepines (BZDs) fused with a triazole ring. Little research has been done about its effects and metabolism, and is sold online as a designer drug.

<span class="mw-page-title-main">Flubromazolam</span> Triazolobenzodiazepine/Benzodiazepine derivative

Flubromazolam (JYI-73) is a triazolobenzodiazepine (TBZD), which are benzodiazepine (BZD) derivatives. Flubromazolam is reputed to be highly potent, and concerns have been raised that clonazolam and flubromazolam in particular may pose comparatively higher risks than other designer benzodiazepines, due to their ability to produce strong sedation and amnesia at oral doses of as little as 0.5 mg. Life-threatening adverse reactions have been observed at doses of only 3 mg of flubromazolam.

<span class="mw-page-title-main">Deschloroetizolam</span> Chemical compound

Deschloroetizolam is a thienotriazolodiazepine that is the dechlorinated analog of the closely related etizolam. The compound has been sold as a designer drug.

<span class="mw-page-title-main">Desmethylflunitrazepam</span> Chemical compound

Desmethylflunitrazepam (also known as norflunitrazepam, Ro05-4435 and fonazepam) is a benzodiazepine that is a metabolite of flunitrazepam and has been sold online as a designer drug. It has an IC50 value of 1.499 nM for the GABAA receptor.

<span class="mw-page-title-main">Flunitrazolam</span> Chemical compound

Flunitrazolam is a triazolobenzodiazepine (TBZD), which are benzodiazepine (BZD) derivatives, that has been sold online as a designer drug, and is a potent hypnotic and sedative drug similar to related compounds such as flunitrazepam, clonazolam and flubromazolam. It was first definitively identified and reported to the EMCDDA Early Warning System, by an analytical laboratory in Germany in October 2016, and had not been described in the scientific or patent literature before this. It is the triazole analogue of Flunitrazepam (Rohypnol). The addition of the triazole ring to the scaffold increases potency significantly, this is evident as flunitrazolam is reported anecdotally to be active in the microgram level. It is active at 0.1 mg.

<span class="mw-page-title-main">Cloniprazepam</span> Benzodiazepine drug

Cloniprazepam is a benzodiazepine derivative and a prodrug of clonazepam, 7-aminoclonazepam, and other metabolites.

<span class="mw-page-title-main">Ro05-4082</span> Chemical compound

Ro05-4082 is a benzodiazepine derivative developed in the 1970s. It has sedative and hypnotic properties, and has around the same potency as clonazepam itself. It was never introduced into clinical use. It is a structural isomer of meclonazepam (3-methylclonazepam), and similarly has been sold as a designer drug, first being identified in Sweden in 2017.

<span class="mw-page-title-main">Ro07-9749</span> Chemical compound

Ro07-9749 is a benzodiazepine derivative with sedative and anxiolytic effects, which has been used as an internal standard in the analysis of other benzodiazepines, and also sold as a designer drug.

References

  1. 1 2 EP 0158267,Posselt K, Wagener HH, Gruber K,,"Pharmaceutical composition containing 5-(2-fluorophenyl)-1,3-dihydro-3-hydroxy-7-nitro- or 5-(2-fluorophenyl)-1,3-dihydro-3-hydroxy-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-one and process for their preparation",published 16 October 1985, assigned to Dolorgiet Beteiligungs-GmbH
  2. "Nifoxipam". New Synthetic Drugs Database.
  3. Kilicarslan T, Haining RL, Rettie AE, Busto U, Tyndale RF, Sellers EM (April 2001). "Flunitrazepam metabolism by cytochrome P450S 2C19 and 3A4". Drug Metabolism and Disposition. 29 (4 Pt 1): 460–5. PMID   11259331.
  4. Moosmann B, King LA, Auwärter V (June 2015). "Designer benzodiazepines: A new challenge". World Psychiatry. 14 (2): 248. doi:10.1002/wps.20236. PMC   4471986 . PMID   26043347.
  5. Kevin Flemen (August 2015). "Drug Facts - Newer Unregulated Drugs" (PDF). KFx. Retrieved 15 August 2015.
  6. "Nifoxipam". WEDINOS.
  7. Meyer MR, Bergstrand MP, Helander A, Beck O (May 2016). "Identification of main human urinary metabolites of the designer nitrobenzodiazepines clonazolam, meclonazepam, and nifoxipam by nano-liquid chromatography-high-resolution mass spectrometry for drug testing purposes". Analytical and Bioanalytical Chemistry. 408 (13): 3571–91. doi:10.1007/s00216-016-9439-6. PMID   27071765. S2CID   25831532.
  8. Pettersson Bergstrand M, Helander A, Hansson T, Beck O (April 2017). "Detectability of designer benzodiazepines in CEDIA, EMIT II Plus, HEIA, and KIMS II immunochemical screening assays". Drug Testing and Analysis. 9 (4): 640–645. doi:10.1002/dta.2003. PMID   27366870.
  9. Katselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S (2016). "Metabolites replace the parent drug in the drug arena. The cases of fonazepam and nifoxipam". Forensic Toxicology. 35 (1): 1–10. doi:10.1007/s11419-016-0338-5. PMC   5214877 . PMID   28127407.