Cardiac magnetic resonance imaging perfusion

Last updated
Cardiac magnetic resonance imaging perfusion
CMR stress perfusion inf defect.gif
Contrast appears in the right ventricle then left ventricle before blushing into the muscle, which is normal (top) and abnormal (bottom, an inferior perfusion defect)
Synonyms Stress CMR perfusion
Purposetest performed on patients with known or suspected coronary artery disease

Cardiac magnetic resonance imaging perfusion (cardiac MRI perfusion, CMRI perfusion), also known as stress CMR perfusion, [1] is a clinical magnetic resonance imaging test performed on patients with known or suspected coronary artery disease to determine if there are perfusion defects in the myocardium of the left ventricle that are caused by narrowing of one or more of the coronary arteries.

Contents

Introduction

CMR perfusion is increasingly used in cardiac imaging to test for inducible myocardial ischaemia and has been well validated against other imaging modalities such as invasive angiography [2] [3] or FFR. Several recent large-scale studies have shown non-inferiority or superiority to SPECT imaging. It is becoming increasingly established as a marker of prognosis in patients with coronary artery disease. [4] [5]

Indications

There are two main reasons for doing this test:[ citation needed ]

  1. To assess the significance of a stenosis (narrowing) in one or more of the coronary arteries that has been previously identified either by standard coronary angiography or CT coronary angiography. This is often used by cardiologists to determine if a coronary stenosis should be treated either by angioplasty or coronary bypass surgery.
  2. To screen patients who have chest pain and risk factors for coronary artery disease, to assess for ischaemia which may be caused by a narrowing in one of the coronary arteries. This could then (if it shows ischaemia) be further investigated with another imaging modality to directly image the coronary arteries such as invasive coronary angiography.

In contrast to the nuclear imaging modalities (PET and SPECT), CMR perfusion does not involve the use of ionising radiation and can therefore be used multiple times without the risk to the patient of exposure to radiation.[ citation needed ]

It is a non-invasive test, is generally regarded as a safe (see below) procedure and is well tolerated by patients (apart from people with claustrophobia)[ citation needed ]

Mechanism

The majority of scans are performed using a stress/rest protocol using adenosine as the stressor which acts to induce ischaemia in the myocardium by the coronary 'steal' phenomenon. Some centers use inotrope dobutamine to stress the heart and the images are interpreted in a similar fashion to dobutamine stress echocardiogram. This article concentrates on adenosine stress scans.[ citation needed ]

Adenosine stress

An intravenous infusion of adenosine is given at 140 μg/Kg/min for 3 minutes with continuous heart rate and blood pressure recording to induce hyperaemia (normally seen as a drop in systolic blood pressure of 10mmHg or a rise in heart rate of 10bpm). Following this, an intravenous bolus of 0.05 mmol/kg of a gadolinium chelate (such as gadodoteric acid) is administered via an antecubital fossa vein on the contralateral arm to the adenosine.[ citation needed ]

The scan

Typically, 3 short axis slices, each of 10mm thickness, are acquired per cardiac cycle, at the basal, mid papillary and apical levels of the left ventricle. A single shot prospectively gated, balanced TFE sequence is used with a typical resolution of 2.5 x 2.5mm. The patient is then allowed to rest until the haemodynamic effects of the adenosine have stopped (typically 5 minutes). The same scan protocol is then performed at rest.[ citation needed ]

Image analysis

The images are stored as video files and are analysed on a dedicated workstation. The majority of clinical scans are analysed qualitatively by visually comparing the stress and rest scans in parallel. In a normal scan, the wash in (1st pass) of gadolinium into the myocardium can be seen as the myocardium turning from black to mid grey uniformly throughout the whole of the left ventricle in both the stress and rest scans. In an abnormal scan an area of the myocardium will turn grey slower than the surrounding tissue as the blood (and hence gadolinium) enters more slowly due to a narrowing of the coronary artery supplying it. This is called a perfusion defect and usually represents myocardial ischaemia. It may be seen on both the rest and stress scans in which case it is called a matched perfusion defect and is probably due to an area or scar from a previous myocardial infarction. If it is only seen on the stress scan it is called an area of inducible perfusion defect (ischaemia). The position in the left ventricle of the perfusion defects are described using the AHA 17 segment model. [6]

Limitations

Stress CMR cannot be performed on all patients due to the relative or absolute contraindications listed below, this is a problem, especially in patients who either have a pacemaker or severe renal failure.[ citation needed ]

The acquisition of the images is very sensitive to the rhythm of the heart and scans of patients with atrial fibrillation, bigeminy or trigeminy will sometimes be of low quality and may not be interpretable.[ citation needed ]

Due to the high contrast between the blood pool and the myocardium it is common to get what looks like a thin subendocardial area of ischaemia called the Gibbs artifact, this however, is less common with newer technology allowing higher resolution imaging.[ citation needed ]

In patients who have had a previous myocardial infarction or previous coronary artery bypass surgery, the images may be very difficult to interpret and in such cases, the analysis of the scans is performed with the complement of another imaging modality (such as coronary angiography).[ citation needed ]

Safety

It is a non-invasive test as is generally regarded as safe however, there are some patients for whom this is contraindicated and there are a number of potential complications:[ citation needed ]

Contraindications

Contraindications are as follows:[ citation needed ]

Adverse events

It is common for the patient to get a number of mild symptoms when they are given the Adenosine infusion, such as feeling hot and sweaty, short of breath, nauseous and noticing that their heart is beating faster. These, if they occur, resolve rapidly (normally within 60 seconds) after the Adensoine infusion has stopped.[ citation needed ]

There are a number of more serious and much less common side effects, including transient heart block, bronchoconstriction and a 1 in 10,000 risk of anaphylaxis caused by the gadolinium contrast agent. These can invariably be successfully treated with no long term side effects.[ citation needed ]

Adenosine infusion is associated with some very rare but very serious side effects, including acute pulmonary oedema and cardiac arrest (occurring in ≈1 in 1000 patients).[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Coronary circulation</span> Circulation of blood in the blood vessels of the heart muscle (myocardium)

Coronary circulation is the circulation of blood in the arteries and veins that supply the heart muscle (myocardium). Coronary arteries supply oxygenated blood to the heart muscle. Cardiac veins then drain away the blood after it has been deoxygenated. Because the rest of the body, and most especially the brain, needs a steady supply of oxygenated blood that is free of all but the slightest interruptions, the heart is required to function continuously. Therefore its circulation is of major importance not only to its own tissues but to the entire body and even the level of consciousness of the brain from moment to moment. Interruptions of coronary circulation quickly cause heart attacks, in which the heart muscle is damaged by oxygen starvation. Such interruptions are usually caused by coronary ischemia linked to coronary artery disease, and sometimes to embolism from other causes like obstruction in blood flow through vessels.

<span class="mw-page-title-main">Single-photon emission computed tomography</span> Nuclear medicine tomographic imaging technique

Single-photon emission computed tomography is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera, but is able to provide true 3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.

In cardiology, hibernating myocardium is a state when some segments of the myocardium exhibit abnormalities of contractile function. These abnormalities can be visualised with echocardiography, cardiac magnetic resonance imaging (CMR), nuclear medicine (PET) or ventriculography. Echocardiography: A wall motion abnormality at rest which improves during a low-dose dobutamine stress test is classified as "hibernating myocardium." Low dose dobutamine stimulates contractile function and thus helps to predict functional recovery after revascularization. Cardiac magnetic resonance: The most frequently used MR contrast agents based on Gd-chelates accumulate in the extracellular space which is increased in scarred myocardium. This leads to a signal increase which can be visualised with the "late gadolinium enhancement technique." This is probably the most accurate way to visualise scarred myocardium. An alternative (or additional) technique with CMR is the use of low dose dobutamine similar to echocardiography. PET: The finding of a perfusion or metabolic mismatch between PET-FDG and PET-NH3 is indicative of decreased metabolism. The wall of the affected segments is hypo-, a-, or dyskinetic.

<span class="mw-page-title-main">Cardiac stress test</span> Measures the hearts ability to respond to external stress in a controlled clinical environment

A cardiac stress test is a cardiological examination that evaluates the cardiovascular system's response to external stress within a controlled clinical setting. This stress response can be induced through physical exercise or intravenous pharmacological stimulation of heart rate.

<span class="mw-page-title-main">Radionuclide angiography</span> Nuclear medicine imaging the ventricles of the heart

Radionuclide angiography is an area of nuclear medicine which specialises in imaging to show the functionality of the right and left ventricles of the heart, thus allowing informed diagnostic intervention in heart failure. It involves use of a radiopharmaceutical, injected into a patient, and a gamma camera for acquisition. A MUGA scan involves an acquisition triggered (gated) at different points of the cardiac cycle. MUGA scanning is also called equilibrium radionuclide angiocardiography, radionuclide ventriculography (RNVG), or gated blood pool imaging, as well as SYMA scanning.

Coronary artery anomalies are variations of the coronary circulation, affecting <1% of the general population. Symptoms include chest pain, shortness of breath and syncope, although cardiac arrest may be the first clinical presentation. Several varieties are identified, with a different potential to cause sudden cardiac death.

<span class="mw-page-title-main">Myocardial perfusion imaging</span> Nuclear medicine imaging method

Myocardial perfusion imaging or scanning is a nuclear medicine procedure that illustrates the function of the heart muscle (myocardium).

<span class="mw-page-title-main">Cardiac magnetic resonance imaging</span>

Cardiac magnetic resonance imaging, also known as cardiovascular MRI, is a magnetic resonance imaging (MRI) technology used for non-invasive assessment of the function and structure of the cardiovascular system. Conditions in which it is performed include congenital heart disease, cardiomyopathies and valvular heart disease, diseases of the aorta such as dissection, aneurysm and coarctation, coronary heart disease. It can also be used to look at pulmonary veins. Patient information may be found here.

The following outline is provided as an overview of and topical guide to cardiology, the branch of medicine dealing with disorders of the human heart. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease and electrophysiology. Physicians who specialize in cardiology are called cardiologists.

Perfusion is the passage of fluid through the lymphatic system or blood vessels to an organ or a tissue. The practice of perfusion scanning is the process by which this perfusion can be observed, recorded and quantified. The term perfusion scanning encompasses a wide range of medical imaging modalities.

<span class="mw-page-title-main">Anomalous left coronary artery from the pulmonary artery</span> Medical condition

Anomalous left coronary artery from the pulmonary artery is a rare congenital anomaly occurring in approximately 1 in 300,000 liveborn children. The diagnosis comprises between 0.24 and 0.46% of all cases of congenital heart disease. The anomalous left coronary artery (LCA) usually arises from the pulmonary artery instead of the aortic sinus. In fetal life, the high pressure in the pulmonic artery and the fetal shunts enable oxygen-rich blood to flow in the LCA. By the time of birth, the pressure will decrease in the pulmonic artery and the child will have a postnatal circulation. The myocardium which is supplied by the LCA, will therefore be dependent on collateral blood flow from the other coronary arteries, mainly the RCA. Because the pressure in RCA exceeds the pressure in LCA a collateral circulation will increase. This situation ultimately can lead to blood flowing from the RCA into the LCA retrograde and into the pulmonary artery, thus forming a left-to-right shunt.

Technetium (<sup>99m</sup>Tc) tetrofosmin Chemical compound

Technetium (99mTc) tetrofosmin is a drug used in nuclear medicine cardiac imaging. It is sold under the brand name Myoview. The radioisotope, technetium-99m, is chelated by two 1,2-bis[di-(2-ethoxyethyl)phosphino]ethane ligands which belong to the group of diphosphines and which are referred to as tetrofosmin.

<span class="mw-page-title-main">ST depression</span> Depression of the ST segment on an electrocardiogram

ST depression refers to a finding on an electrocardiogram, wherein the trace in the ST segment is abnormally low below the baseline.

<span class="mw-page-title-main">Myocardial bridge</span> Medical condition

A myocardial bridge (MB) is a congenital heart defect in which one of the coronary arteries tunnels through the heart muscle itself (myocardium). In normal patients, the coronary arteries rest on top of the heart muscle and feed blood down into smaller vessels which then take blood into the heart muscle itself. However, if a band of muscle forms around one of the coronary arteries during the fetal stage of development, then a myocardial bridge is formed – a "bridge" of heart muscle over the artery. Each time the heart squeezes to pump blood, the band of muscle exerts pressure and constricts the artery, reducing blood flow to the heart. This defect is present from birth. It is important to note that even a very thin ex. <1 mm and/or short ex. 20 mm MB can cause significant symptoms. MBs can range from a few mm in length to 10 cm or more. The overall prevalence of myocardial bridge is 19%, although its prevalence found by autopsy is much higher (42%).

Rubidium-82 (82Rb) is a radioactive isotope of rubidium. 82Rb is widely used in myocardial perfusion imaging. This isotope undergoes rapid uptake by myocardiocytes, which makes it a valuable tool for identifying myocardial ischemia in Positron Emission Tomography (PET) imaging. 82Rb is used in the pharmaceutical industry and is marketed as Rubidium-82 chloride under the trade names RUBY-FILL and CardioGen-82.

Cardiac PET is a form of diagnostic imaging in which the presence of heart disease is evaluated using a PET scanner. Intravenous injection of a radiotracer is performed as part of the scan. Commonly used radiotracers are Rubidium-82, Nitrogen-13 ammonia and Oxygen-15 water.

A diagnosis of myocardial infarction is created by integrating the history of the presenting illness and physical examination with electrocardiogram findings and cardiac markers. A coronary angiogram allows visualization of narrowings or obstructions on the heart vessels, and therapeutic measures can follow immediately. At autopsy, a pathologist can diagnose a myocardial infarction based on anatomopathological findings.

Cardiac imaging refers to minimally invasive imaging of the heart using ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), or nuclear medicine (NM) imaging with PET or SPECT. These cardiac techniques are otherwise referred to as echocardiography, Cardiac MRI, Cardiac CT, Cardiac PET and Cardiac SPECT including myocardial perfusion imaging.

<span class="mw-page-title-main">Strain rate imaging</span>

Strain rate imaging is a method in echocardiography for measuring regional or global deformation of the myocardium. The term "deformation" refers to the myocardium changing shape and dimensions during the cardiac cycle. If there is myocardial ischemia, or there has been a myocardial infarction, in part of the heart muscle, this part is weakened and shows reduced and altered systolic function. Also in regional asynchrony, as in bundle branch block, there is regional heterogeneity of systolic function. By strain rate imaging, the simultaneous function of different regions can be displayed and measured. The method was first based on colour tissue Doppler. by using the longitudinal myocardial velocity gradient, already in use transmurally. Later, the regional deformation has also been available by speckle tracking echocardiography, both methods having some, but different methodological weaknesses. Both methods, however, will acquire the same data, and also can be displayed by the same type of display.

<span class="mw-page-title-main">Oxygen-15 labelled water</span> Chemical compound

Oxygen-15 labelled water (also known as 15O-water, [O-15]-H2O, or H215O) is a radioactive variation of regular water, in which the oxygen atom has been replaced by oxygen-15 (15O), a positron-emitting isotope. 15O-water is used as a radioactive tracer for measuring and quantifying blood flow using positron emission tomography (PET) in the heart, brain and tumors.

References

  1. Rieber, J. (2005). "Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve". European Heart Journal. 27 (12): 1465–1471. doi: 10.1093/eurheartj/ehl039 . ISSN   0195-668X. PMID   16720685.
  2. Wilke NM, Jerosch-Herold M, Zenovich A, Stillman AE (1999). "Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications". J Magn Reson Imaging. 10 (5): 676–85. doi:10.1002/(sici)1522-2586(199911)10:5<676::aid-jmri10>3.0.co;2-l. PMID   10548775. S2CID   45920843.
  3. Al-Saadi N, Nagel E, Gross M, et al. (2000). "Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance". Circulation. 101 (12): 1379–83. doi: 10.1161/01.cir.101.12.1379 . PMID   10736280.
  4. Jahnke C, Nagel E, Gebker R, et al. (2007). "Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging". Circulation. 115 (13): 1769–76. doi:10.1161/CIRCULATIONAHA.106.652016. PMID   17353441.
  5. Schwitter J, Wacker CM, van Rossum AC, et al. (2008). "MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial". European Heart Journal. 29 (12): 480–89. doi: 10.1093/eurheartj/ehm617 . PMID   18208849.
  6. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002). "Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association". Circulation. 105 (4): 539–42. doi:10.1161/hc0402.102975. PMID   11815441.