MCDRAM

Last updated

Multi-Channel DRAM or MCDRAM (pronounced em cee dee ram [1] ) is a 3D-stacked DRAM that is used in the Intel Xeon Phi processor codenamed Knights Landing. It is a version of Hybrid Memory Cube developed in partnership with Micron Technology, and a competitor to High Bandwidth Memory.

Contents

The many cores in the Xeon Phi processors, along with their associated vector processing units, enable them to consume many more gigabytes per second than traditional DRAM DIMMs can supply. The "Multi-channel" part of the MCDRAM full name reflects the cores having many more channels available to access the MCDRAM than processors have to access their attached DIMMs. [2] This high channel count leads to MCDRAM's high bandwidth, up to 400+ GB/s, although the latencies are similar to a DIMM access.

Its physical placement on the processor imposes some limits on capacity – up to 16 GB at launch, although speculated to go higher in the future.

Programming

The memory can be partitioned at boot time, with some used as cache for more distant DDR, and the remainder mapped into the physical address space.

The application can request pages of virtual memory to be assigned to either the distant DDR directly, to the portion of DDR that is cached by the MCDRAM, or to the portion of the MCDRAM that is not being used as cache. One way to do this is via thememkind API. [3]

When used as cache, the latency of a miss accessing both the MCDRAM and DDR is slightly higher than going directly to DDR, and so applications may need to be tuned [4] to avoid excessive cache misses.

Related Research Articles

<span class="mw-page-title-main">DDR SDRAM</span> Type of computer memory

Double Data Rate Synchronous Dynamic Random-Access Memory is a double data rate (DDR) synchronous dynamic random-access memory (SDRAM) class of memory integrated circuits used in computers. DDR SDRAM, also retroactively called DDR1 SDRAM, has been superseded by DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM and DDR5 SDRAM. None of its successors are forward or backward compatible with DDR1 SDRAM, meaning DDR2, DDR3, DDR4 and DDR5 memory modules will not work on DDR1-equipped motherboards, and vice versa.

Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU).

<span class="mw-page-title-main">Synchronous dynamic random-access memory</span> Type of computer memory

Synchronous dynamic random-access memory is any DRAM where the operation of its external pin interface is coordinated by an externally supplied clock signal.

Rambus DRAM (RDRAM), and its successors Concurrent Rambus DRAM (CRDRAM) and Direct Rambus DRAM (DRDRAM), are types of synchronous dynamic random-access memory (SDRAM) developed by Rambus from the 1990s through to the early 2000s. The third-generation of Rambus DRAM, DRDRAM was replaced by XDR DRAM. Rambus DRAM was developed for high-bandwidth applications and was positioned by Rambus as replacement for various types of contemporary memories, such as SDRAM.

<span class="mw-page-title-main">Xeon</span> Line of Intel server and workstation processors

Xeon is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for error correction code (ECC) memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture (MCA). They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus, which replaced the older QuickPath Interconnect (QPI) bus.

<span class="mw-page-title-main">Altix</span> Supercomputer family

Altix is a line of server computers and supercomputers produced by Silicon Graphics, based on Intel processors. It succeeded the MIPS/IRIX-based Origin 3000 servers.

<span class="mw-page-title-main">Double data rate</span> Method of computer bus operation

In computing, double data rate (DDR) describes a computer bus that transfers data on both the rising and falling edges of the clock signal and hence doubles the memory bandwidth by transferring data twice per clock cycle. This is also known as double pumped, dual-pumped, and double transition. The term toggle mode is used in the context of NAND flash memory.

In the fields of digital electronics and computer hardware, multi-channel memory architecture is a technology that increases the data transfer rate between the DRAM memory and the memory controller by adding more channels of communication between them. Theoretically, this multiplies the data rate by exactly the number of channels present. Dual-channel memory employs two channels. The technique goes back as far as the 1960s having been used in IBM System/360 Model 91 and in CDC 6600.

Double Data Rate 3 Synchronous Dynamic Random-Access Memory is a type of synchronous dynamic random-access memory (SDRAM) with a high bandwidth interface, and has been in use since 2007. It is the higher-speed successor to DDR and DDR2 and predecessor to DDR4 synchronous dynamic random-access memory (SDRAM) chips. DDR3 SDRAM is neither forward nor backward compatible with any earlier type of random-access memory (RAM) because of different signaling voltages, timings, and other factors.

<span class="mw-page-title-main">Fully Buffered DIMM</span>

A Fully Buffered DIMM (FB-DIMM) is a type of memory module used in computer systems. It is designed to improve memory performance and capacity by allowing multiple memory modules to be each connected to the memory controller using a serial interface, rather than a parallel one. Unlike the parallel bus architecture of traditional DRAMs, an FB-DIMM has a serial interface between the memory controller and the advanced memory buffer (AMB). Conventionally, data lines from the memory controller have to be connected to data lines in every DRAM module, i.e. via multidrop buses. As the memory width increases together with the access speed, the signal degrades at the interface between the bus and the device. This limits the speed and memory density, so FB-DIMMs take a different approach to solve the problem.

A memory controller, also known as memory chip controller (MCC) or a memory controller unit (MCU), is a digital circuit that manages the flow of data going to and from a computer's main memory. When a memory controller is integrated into another chip, such as being placed on the same die or as an integral part of a microprocessor, it is usually called an integrated memory controller (IMC).

Double Data Rate 4 Synchronous Dynamic Random-Access Memory is a type of synchronous dynamic random-access memory with a high bandwidth interface.

<span class="mw-page-title-main">Random-access memory</span> Form of computer data storage

Random-access memory is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media, where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

<span class="mw-page-title-main">POWER8</span> 2014 family of multi-core microprocessors by IBM

POWER8 is a family of superscalar multi-core microprocessors based on the Power ISA, announced in August 2013 at the Hot Chips conference. The designs are available for licensing under the OpenPOWER Foundation, which is the first time for such availability of IBM's highest-end processors.

<span class="mw-page-title-main">Skylake (microarchitecture)</span> CPU microarchitecture by Intel

Skylake is Intel's codename for its sixth generation Core microprocessor family that was launched on August 5, 2015, succeeding the Broadwell microarchitecture. Skylake is a microarchitecture redesign using the same 14 nm manufacturing process technology as its predecessor, serving as a tock in Intel's tick–tock manufacturing and design model. According to Intel, the redesign brings greater CPU and GPU performance and reduced power consumption. Skylake CPUs share their microarchitecture with Kaby Lake, Coffee Lake, Whiskey Lake, and Comet Lake CPUs.

<span class="mw-page-title-main">Xeon Phi</span> Series of x86 manycore processors from Intel

Xeon Phi is a discontinued series of x86 manycore processors designed and made by Intel. It was intended for use in supercomputers, servers, and high-end workstations. Its architecture allowed use of standard programming languages and application programming interfaces (APIs) such as OpenMP.

<span class="mw-page-title-main">DDR5 SDRAM</span> Fifth generation of double-data-rate synchronous dynamic random-access memory

Double Data Rate 5 Synchronous Dynamic Random-Access Memory is the latest type of synchronous dynamic random-access memory. Compared to its predecessor DDR4 SDRAM, DDR5 was planned to reduce power consumption, while doubling bandwidth. The standard, originally targeted for 2018, was released on July 14, 2020.

<span class="mw-page-title-main">High Bandwidth Memory</span> Type of memory used on processors that require high transfer rate memory

High Bandwidth Memory (HBM) is a computer memory interface for 3D-stacked synchronous dynamic random-access memory (SDRAM) initially from Samsung, AMD and SK Hynix. It is used in conjunction with high-performance graphics accelerators, network devices, high-performance datacenter AI ASICs, as on-package cache in CPUs and on-package RAM in upcoming CPUs, and FPGAs and in some supercomputers. The first HBM memory chip was produced by SK Hynix in 2013, and the first devices to use HBM were the AMD Fiji GPUs in 2015.

<span class="mw-page-title-main">3D XPoint</span> Discontinued computer memory type

3D XPoint is a discontinued non-volatile memory (NVM) technology developed jointly by Intel and Micron Technology. It was announced in July 2015 and was available on the open market under the brand name Optane (Intel) from April 2017 to July 2022. Bit storage is based on a change of bulk resistance, in conjunction with a stackable cross-grid data access array. Initial prices are less than dynamic random-access memory (DRAM) but more than flash memory.

Coherent Accelerator Processor Interface (CAPI), is a high-speed processor expansion bus standard for use in large data center computers, initially designed to be layered on top of PCI Express, for directly connecting central processing units (CPUs) to external accelerators like graphics processing units (GPUs), ASICs, FPGAs or fast storage. It offers low latency, high speed, direct memory access connectivity between devices of different instruction set architectures.

References

  1. Mike P. (sic) (January 20, 2016). "An Intro to MCDRAM (High Bandwidth Memory) on Knights Landing". software.intel.com. Retrieved April 18, 2016.
  2. Ian Cutress (November 16, 2015). "A few notes on Intel's Knights Landing and MDRAM modes from SC15". www.anandtech.com. Retrieved April 18, 2016.
  3. Christopher Cantalupo; et al. (March 18, 2015). "User Extensible Heap Manager for Heterogeneous Memory Platforms and Mixed Memory Policies" (PDF). memkind.github.io. Retrieved April 18, 2016.
  4. Mike P. (sic) (March 10, 2016). "MCDRAM (High Bandwidth Memory) on Knights Landing – Analysis Methods & Tools". software.intel.com. Retrieved April 18, 2016.