Pentium M

Last updated
Pentium M
Pentium M.jpg
Original logo (2003-2006)
General information
LaunchedMarch 12, 2003;21 years ago (2003-03-12)
DiscontinuedJuly 14, 2009;14 years ago (2009-07-14) [1] [ better source needed ]
Marketed byIntel
Designed byIntel
Common manufacturer(s)
  • Intel
CPUID code695h (Banias)
0x6DX (Dothan)
Product codeBanias: 80535
Dothan: 80536
Performance
Max. CPU clock rate 900 MHz to 2.26 GHz
FSB speeds400 MT/s to 533 MT/s
Data width64 bits
Address width36 bits
Virtual address width32 bits
Cache
L1 cache 64 KB (32 KB data + 32 KB instructions)
L2 cache1 MB or 2 MB, shared
Architecture and classification
ApplicationMobile
Technology node 130 nm to 90 nm
Microarchitecture P6 variant
Instruction set x86-16, IA-32
Extensions
Physical specifications
Transistors
  • Banias: 77 million
  • Dothan: 140 million
Cores
  • 1
Package(s)
  • Micro pin grid array (mPGA)
  • High performance ball grid array (H-PBGA)
Socket(s)
Products, models, variants
Core name(s)
  • Banias
  • Dothan
Variant(s)
History
Predecessor(s) Pentium 4 M
Successor(s) Intel Core (Yonah)
Stealey
Support status
Unsupported

The Pentium M is a family of mobile 32-bit single-core x86 microprocessors (with the modified Intel P6 microarchitecture) introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. [2] The Pentium M processors had a maximum thermal design power (TDP) of 5–27 W depending on the model, and were intended for use in laptops (thus the "M" suffix standing for mobile). They evolved from the core of the last Pentium III–branded CPU by adding the front-side bus (FSB) interface of Pentium 4, an improved instruction decoding and issuing front end, improved branch prediction, SSE2 support, and a much larger cache.

Contents

The first Pentium M–branded CPU, code-named Banias, was followed by Dothan. [3]

The Pentium M line was removed from the official price lists in July 2009, when the Pentium M-branded processors were succeeded by the Core-branded dual-core mobile Yonah CPU with a modified microarchitecture. It replaced the Pentium 4 M processor, which suffered from power consumption and heat problems.

Overview

The Pentium M represented a new and radical departure for Intel, as it was not a low-power version of the desktop-oriented Pentium 4, but instead a heavily modified version of the Pentium III Tualatin design (itself based on the Pentium II core design, which in turn had been a heavily improved evolution of the Pentium Pro). It is optimized for power efficiency, a vital characteristic for extending notebook computer battery life. Running with very low average power consumption and much lower heat output than desktop processors, the Pentium M runs at a lower clock speed than the laptop version of the Pentium 4 (The Pentium 4-Mobile, or P4-M), but with similar performance - a 1.6 GHz Pentium M can typically attain or even surpass the performance of a 2.4 GHz Pentium 4-M. [4] The Pentium M 740 has been tested to perform up to approximately 7,400 MIPS and 3.9 GFLOPS (using SSE2). [5]

The Pentium M coupled the execution core of the Pentium III with a Pentium 4 compatible bus interface, an improved instruction decoding/issuing front end, improved branch prediction, SSE2 support, and a much larger cache. The usually power-hungry secondary cache uses an access method which only switches on the portion being accessed. The main intention behind the large cache was to keep a decent-sized portion of it still available to the processor even when most of the L2 cache was switched off, but its size led to a welcome improvement in performance.

Other power saving methods include dynamically variable clock frequency and core voltage, allowing the Pentium M to throttle clock speed when the system is idle in order to conserve energy, using the SpeedStep 3 technology (which has more sleep stages than previous versions of SpeedStep). With this technology, a 1.6 GHz Pentium M can effectively throttle to clock speeds of 600 MHz, 800 MHz, 1000 MHz, 1200 MHz, 1400 MHz and 1600 MHz; these intermediate clock states allow the CPU to better throttle clock speed to suit conditions. The power requirements of the Pentium M varies from 5 watts when idle to 27 watts at full load. This is useful to notebook manufacturers as it allows them to include the Pentium M into smaller notebooks.

Although Intel marketed the Pentium M exclusively as a mobile product, motherboard manufacturers such as AOpen, DFI and MSI shipped Pentium M compatible boards designed to non-mobile enthusiasts, HTPC, workstation and server applications. An adapter, the CT-479, was developed by ASUS to allow the use of Pentium M processors in selected ASUS motherboards designed for Socket 478 Pentium 4 processors. Shuttle Inc. offered packaged Pentium M desktops, marketed for low energy consumption and minimal cooling system noise. Pentium M processors are also of interest to embedded systems' manufacturers because the low power consumption of the Pentium M allows the design of fanless and miniaturized embedded PCs. The Pentium M also responds very well to undervolting, which can be done with the program Notebook Hardware Control or RMClock.

Intel Pentium M processor family
2003-2006 Logo2006-2008 LogoLaptop
Code-nameProcessDate released
Pentium M.jpg Pentiummn.png Banias
Dothan
(130 nm)
(90 nm)
Mar 2003
Jun 2004
List of Intel Pentium M processors

Banias

Pentium M 1.4/1M with Banias core Intel Pentium M 1.4 (RH80535GC0171M)-top PNrdeg0334.jpg
Pentium M 1.4/1M with Banias core
Backside of a Pentium M 1.4 Intel Pentium M 1.4 (RH80535GC0171M)-bottom oblique PNrdeg0336.jpg
Backside of a Pentium M 1.4

As the M line was originally designed in Israel, [6] the first Pentium M was identified by the codename Banias, named after an ancient site in the Golan Heights. The Intel Haifa team had previously been working on the memory controller for Timna, which was based on earlier P6 memory controller designs giving them detailed knowledge of P6 architecture which they used when Intel gave them a crash project to create a backup mobile CPU. [7] Given the product code 80535, it initially had no model number suffix, but was later identified as the Pentium M 705. It was manufactured on a 130 nm process, was released at frequencies from 900 MHz to 1.7 GHz using a 400  MT/s FSB, and had 1 megabyte (MB) of Level 2 cache. The core average TDP (Thermal Design Power) is 24.5 watts.

The Banias family processors internally support Physical Address Extension (PAE) but do not show the PAE support flag in their CPUID information; this causes some operating systems (primarily Linux distributions) to refuse to boot on such processors since PAE support is required in their kernels. [8] Using the 'forcepae' Linux boot option will allow Linux to boot using PAE in these cases. Windows 8 and later also refuses to boot on these processors for the same reason, as they specifically require PAE support to run properly. Attempting to boot with these processors installed (as well as on Dothan family processors without PAE support flag enabled in their CPUID info) will result in a crash when attempting to load ntoskrnl.exe early on in the boot process, with error code 0xc0000260 (UNSUPPORTED_PROCESSOR). [9]

Dothan

Pentium M 730 (1.6/2M/533) with Dothan core Pentium M Dothan.jpg
Pentium M 730 (1.6/2M/533) with Dothan core
The backside of a Dothan core Pentium M 730 Pentium M Dothan Backside.jpg
The backside of a Dothan core Pentium M 730

On September 17, 2003, Intel unveiled plans for releasing its then next-generation of Pentium M processors, codenamed "Dothan" by them. It was named after another ancient town in Israel, and it launched formally on May 10, 2004. Dothan Pentium M processors (product code 80536, CPUID 0x6DX) are among the first Intel processors to be identified using a "processor number" rather than a clockspeed rating; this allowed for more precise distinctions between different kinds of processors. The initial Dothan versions with the 400MT/s Front-Side-Bus (FSB) are known as Pentium M 710 (1.4 GHz), 715 (1.5 GHz), 725 (1.6 GHz), 735 (1.7 GHz), 745 (1.8 GHz), 755 (2.0 GHz), and 765 (2.1 GHz). [10] [11] These initial Dothan models all have a TDP of 21 W and a 2 MB L2 cache.

These 700 series Dothan Pentium M processors retain the same basic design as the original Banias Pentium M, but are manufactured on a 90 nm process, with twice the secondary cache. Die size, at 87 mm2, remains in the same neighborhood as the original Pentium M, even though the 1000 series contains approximately 140 million transistors, most of which make up the 2 MB cache. TDP is also down to 21 watts with the 400 MT/s FSB (from 24.5 watts in Banias), though power use at lower clockspeeds has increased highly. However, tests conducted by third party hardware review sites show that Banias and Dothan equipped notebooks have roughly equivalent battery life.[ citation needed ] Additionally third party hardware review sites have benchmarked the Dothan at approx 10-20% better performance than the Banias in most situations.

Revisions of the Dothan core were released in the first quarter of 2005 with the Sonoma chipsets and supported a 533 MT/s FSB and XD (Intel's name for the NX bit); and the PAE support flag in the CPUID was enabled, unlike earlier Pentium Ms that showed PAE unavailable. This resolved boot errors in Linux distributions as well as in Windows 8 and later. These revised Dothan processors include the 730 (1.6 GHz), 740 (1.73 GHz), 750 (1.86 GHz), 760 (2.0 GHz), 770 (2.13 GHz) and 780 (2.26 GHz) and have a TDP of 27 W and a 2 MB L2 cache.

In July 2005, Intel released the 780 (2.26 GHz) and the low-voltage 778 (1.60 GHz).

The processor line had models running at clock speeds from 1.0 GHz to 2.26 GHz as of July 2005. The models with lower frequencies were either low voltage or ultra-low voltage CPUs designed for improved battery life and reduced heat output. The 718 (1.3 GHz), 738 (1.4 GHz), and 758 (1.5 GHz) models are low-voltage (1.116 V) with a TDP of 10 W, while the 723 (1.0 GHz), 733 (1.1 GHz), and 753 (1.2 GHz) models are ultra-low voltage (0.940 V) with a TDP of 5 W.

Intel A100 series

An ultra low-power microprocessor based on the Dothan built on a 90 nm process with 512 KB L2 cache and 400 MT/s front side bus (FSB).

Core Solo and Core Duo

The next generation of processors, codenamed Yonah , were based on the Enhanced Pentium M architecture, and released under the Intel Core brand, as Core Duo and Core Solo.

See also

Related Research Articles

<span class="mw-page-title-main">Celeron</span> Line of discontinued microprocessors made by Intel

Celeron is a discontinued series of low-end IA-32 and x86-64 computer microprocessor models targeted at low-cost personal computers, manufactured by Intel. The first Celeron-branded CPU was introduced on April 15, 1998, and was based on the Pentium II.

<span class="mw-page-title-main">Pentium 4</span> Brand by Intel

Pentium 4 is a series of single-core CPUs for desktops, laptops and entry-level servers manufactured by Intel. The processors were shipped from November 20, 2000 until August 8, 2008. It was removed from the official price lists starting in 2010, being replaced by Pentium Dual-Core.

<span class="mw-page-title-main">Pentium III</span> Line of desktop and mobile microprocessors produced by Intel

The Pentium III brand refers to Intel's 32-bit x86 desktop and mobile CPUs based on the sixth-generation P6 microarchitecture introduced on February 28, 1999. The brand's initial processors were very similar to the earlier Pentium II-branded processors. The most notable differences were the addition of the Streaming SIMD Extensions (SSE) instruction set, and the introduction of a controversial serial number embedded in the chip during manufacturing. The Pentium III is also a single-core processor.

<span class="mw-page-title-main">Athlon 64</span> Series of CPUs by AMD

The Athlon 64 is a ninth-generation, AMD64-architecture microprocessor produced by Advanced Micro Devices (AMD), released on September 23, 2003. It is the third processor to bear the name Athlon, and the immediate successor to the Athlon XP. The Athlon 64 was the second processor to implement the AMD64 architecture and the first 64-bit processor targeted at the average consumer. Variants of the Athlon 64 have been produced for Socket 754, Socket 939, Socket 940, and Socket AM2. It was AMD's primary consumer CPU, and primarily competed with Intel's Pentium 4, especially the Prescott and Cedar Mill core revisions.

Tejas was a code name for Intel's microprocessor, which was to be a successor to the latest Pentium 4 with the Prescott core and was sometimes referred to as Pentium V. Jayhawk was a code name for its Xeon counterpart. The cancellation of the processors in May 2004 underscored Intel's historical transition of its focus on single-core processors to multi-core processors.

<span class="mw-page-title-main">Xeon</span> Line of Intel server and workstation processors

Xeon is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for error correction code (ECC) memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture (MCA). They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus, which replaced the older QuickPath Interconnect (QPI) bus.

The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2001, Intel released the Foster core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture.

<span class="mw-page-title-main">VIA C7</span> Central processing unit designed by Centaur Technology and sold by VIA Technologies

The VIA C7 is an x86 central processing unit designed by Centaur Technology and sold by VIA Technologies.

<span class="mw-page-title-main">P6 (microarchitecture)</span> Intel processor microarchitecture

The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.

The Intel Core microarchitecture is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004 the new version of NetBurst (Prescott) needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004 Intel confirmed the cancellation of the next NetBurst, Tejas and Jayhawk. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice of a short and efficient pipeline, delivering superior performance despite not reaching the high clocks of NetBurst.

<span class="mw-page-title-main">Yonah (microprocessor)</span> Code name of Intels first generation 65 nm process CPU cores

Yonah is the code name of Intel's first generation 65 nm process CPU cores, based on cores of the earlier Banias / Dothan Pentium M microarchitecture. Yonah CPU cores were used within Intel's Core Solo and Core Duo mobile microprocessor products. SIMD performance on Yonah improved through the addition of SSE3 instructions and improvements to SSE and SSE2 implementations; integer performance decreased slightly due to higher latency cache. Additionally, Yonah included support for the NX bit.

<span class="mw-page-title-main">Pentium</span> Brand of discontinued microprocessors produced by Intel

Pentium is a discontinued series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium was first released on March 22, 1993. The name "Pentium" is originally derived from the Greek word pente (πεντε), meaning "five", a reference to the prior numeric naming convention of Intel's 80x86 processors (8086–80486), with the Latin ending -ium since the processor would otherwise have been named 80586 using that convention.

<span class="mw-page-title-main">Pentium Dual-Core</span> Line of CPUs by Intel

The Pentium Dual-Core brand was used for mainstream x86-architecture microprocessors from Intel from 2006 to 2009, when it was renamed to Pentium. The processors are based on either the 32-bit Yonah or 64-bit Merom-2M, Allendale, and Wolfdale-3M core, targeted at mobile or desktop computers.

AMD Turion is the brand name AMD applies to its x86-64 low-power consumption (mobile) processors codenamed K8L. The Turion 64 and Turion 64 X2/Ultra processors compete with Intel's mobile processors, initially the Pentium M and the Intel Core and Intel Core 2 processors.

<span class="mw-page-title-main">Conroe (microprocessor)</span> Code name for several Intel processors

Conroe is the code name for many Intel processors sold as Core 2 Duo, Xeon, Pentium Dual-Core and Celeron. It was the first desktop processor to be based on the Core microarchitecture, replacing the NetBurst microarchitecture based Cedar Mill processor. It has product code 80557, which is shared with Allendale and Conroe-L that are very similar but have a smaller L2 cache. Conroe-L has only one processor core and a new CPUID model. The mobile version of Conroe is Merom, the dual-socket server version is Woodcrest, the quad-core desktop version is Kentsfield and the quad-core dual-socket version is Clovertown. Conroe was replaced by the 45 nm Wolfdale processor.

<span class="mw-page-title-main">Merom (microprocessor)</span> Code name for various mobile Intel processors

Merom is the code name for various mobile Intel processors that are sold as Core 2 Duo, Core 2 Solo, Pentium Dual-Core and Celeron. It was the first mobile processor to be based on the Core microarchitecture, replacing the Enhanced Pentium M-based Yonah processor. Merom has the product code 80537, which is shared with Merom-2M and Merom-L that are very similar but have a smaller L2 cache. Merom-L has only one processor core and a different CPUID model. The desktop version of Merom is Conroe and the dual-socket server version is Woodcrest. Merom was manufactured in a 65 nanometer process, and was succeeded by Penryn, a 45 nm version of the Merom architecture. Together, Penryn and Merom represented the first 'tick-tock' in Intel's Tick-Tock manufacturing paradigm, in which Penryn was the 'tick' to Merom's 'tock'.

<span class="mw-page-title-main">Penryn (microprocessor)</span>

Penryn is the code name of a processor from Intel that is sold in varying configurations as Core 2 Solo, Core 2 Duo, Core 2 Quad, Pentium and Celeron.

The HP Pavilion dv1000 was a model series of "thin and light" widescreen laptops manufactured by Hewlett-Packard Company that features a 14.1" diagonal 16:10 display.

Bonnell is a CPU microarchitecture used by Intel Atom processors which can execute up to two instructions per cycle. Like many other x86 microprocessors, it translates x86 instructions into simpler internal operations prior to execution. The majority of instructions produce one micro-op when translated, with around 4% of instructions used in typical programs producing multiple micro-ops. The number of instructions that produce more than one micro-op is significantly fewer than the P6 and NetBurst microarchitectures. In the Bonnell microarchitecture, internal micro-ops can contain both a memory load and a memory store in connection with an ALU operation, thus being more similar to the x86 level and more powerful than the micro-ops used in previous designs. This enables relatively good performance with only two integer ALUs, and without any instruction reordering, speculative execution or register renaming. A side effect of having no speculative execution is invulnerability against Meltdown and Spectre.

References

  1. "Product Change Notification #106928–02". Intel. December 27, 2006. Retrieved October 14, 2019.
  2. Stokes, Jon (25 February 2004). "A Look at Centrino's Core: The Pentium M". Ars Technica. Retrieved 11 November 2019.
  3. Shimpi, Anand Lal. "Intel's 90nm Pentium M 755: Dothan Investigated". www.anandtech.com. Retrieved 2019-12-05.
  4. Intel's Centrino Duo Notebook Technology
  5. "Intel Pentium M 740 PCSTATS Review - Benchmarks: Office Productivity, SiSoft Sandra 2005". Archived from the original on 2013-10-29. Retrieved 2007-09-14.
  6. "Mooly Eden: A look into the origins of Core 2 Duo". Tom's Hardware . 20 September 2006.
  7. Shimpi, Anand Lal. "Intel's Centrino CPU (Pentium-M): Revolutionizing the Mobile World". AnandTech . Retrieved 2019-12-05.
  8. "PAE - Community Help Wiki". Ubuntu Help.
  9. This Does Not Compute. Can You Install Windows 10 on a Pentium II?. YouTube. Section starts at 32:35.
  10. Intel Outlines Plans For Wireless Notebook PCs, Cell Phones And Handhelds, Intel Corporation
  11. Intel launches Dothan with Pentium M price cuts, The Register