Yonah (microprocessor)

Last updated

Yonah
Core duo u2500 sl9jq.png
Core Duo U2500 in BGA packaging
General information
Launched2006
Discontinued2008
Marketed byIntel
Designed byIntel
Common manufacturer(s)
  • Intel
CPUID code06Ex
Product code
  • 80538 (single-core)
  • 80539 (dual-core)
Performance
Max. CPU clock rate 1.06 GHz to 2.33 GHz
FSB speeds533 MT/s to 667 MT/s
Cache
L1 cache 32 KB instruction, 32 KB data per core
L2 cache2 MB, shared
Architecture and classification
ApplicationMobile
Technology node 65 nm
Microarchitecture Enhanced Pentium M
Instruction set x86
Physical specifications
Cores
  • 1–2
Package(s)
  • FC-BGA 479
Socket(s)
Products, models, variants
Brand name(s)
  • Mobile Celeron 4xx
  • Mobile Pentium Dual-Core T2xxx
  • Core Duo T2xxx
  • Core Duo L2xxx
  • Core Duo U2xxx
  • Core Solo T1xxx
  • Core Solo U1xxx
  • Mobile Xeon LV/ULV
History
Predecessor(s) Dothan
Successor(s) Merom
Support status
Unsupported

Yonah is the code name of Intel's first generation 65 nm process CPU cores, based on cores of the earlier Banias (130 nm) / Dothan (90 nm) Pentium M microarchitecture. Yonah CPU cores were used within Intel's Core Solo and Core Duo mobile microprocessor products. SIMD performance on Yonah improved through the addition of SSE3 instructions and improvements to SSE and SSE2 implementations; integer performance decreased slightly due to higher latency cache. Additionally, Yonah included support for the NX bit.

Contents

Models and brand names

The Intel Core Duo brand referred to a low-power (less than 25 watts) dual-core microprocessor, which offered lower power operation than the competing AMD Opteron 260 and 860 HE at 55 watts. Core Duo was released on January 5, 2006, with the other components of the Napa platform. It was the first Intel processor to be used in Apple Macintosh products (although the Apple Developer Transition Kit machines, non-production units distributed to some developers, used Pentium 4 processors). [1]

There were two variants and one derivative of the Yonah, which did not bear the "Intel Core" brand name:

Brand (main article)Model (list)CoresL2 Cache TDP
Core Duo T2xxx 22 MB31 W
L2xxx 15 W
U2xxx 9 W
Core Solo T1xxx 12 MB27-31 W
U1xxx 5.5-6 W
Pentium Dual-Core T2xxx 21 MB31 W
Celeron M 215 1512 KB27 W
M 4x0 1 MB27 W
M 4x3 5.5 W

Technical specifications

Core Duo contains 151 million transistors, including the shared 2  MB L2 cache. Yonah's execution core contains a 12-stage pipeline, forecast to eventually be able to run at a maximum frequency of 2.332.50 GHz. The communication between the L2 cache and both execution cores is handled by a bus unit controller through arbitration, which reduces cache coherency traffic over the FSB, at the expense of raising the core-to-L2 latency from 10 clock cycles (in the Dothan Pentium M) to 14 clock cycles. The increase in clock frequency offsets the impact of the increased clock cycle latency. The power management components of the core features improved grained thermal control, as well as independent scaling of power between the two cores, resulting in very efficient management of power.

Core processors communicate with the system chipset over a 667 MT/s front side bus (FSB), up from 533 MT/s used by the fastest Pentium M. T2050 & T2250 have also appeared in OEM systems as a low-cost option with a lower 533 MT/s FSB and no Intel VT-x.

Yonah is supported by the 945GM, 945PM, 945GT, 965GM, 965PM, and 965GT system chipsets. Core Duo and Core Solo use Socket M, but due to pin arrangement and new chipset functions are not compatible with any previous Pentium M motherboard.

Contrary to early reports, the Intel Core Duo supports Intel VT-x x86 virtualization, except in the T2300E model and proprietary T2050/T2150/T2250 mounted by OEMs (cf. the Intel Centrino Duo Mobile Technology Performance Brief and Intel's Processor Number Feature Table). The Intel Pentium Dual-Core processors do not have this feature, [3] except for the T2060, T2080, and T2130 mobile CPUs. However some vendors (including HP) chose to disable this feature, [4] [5] with others making it available through a BIOS option. [6]

The T2300E was later introduced as a replacement for the T2300. It has dropped support for Intel VT-x. Early Intel specifications mistakenly claimed a halving of the Thermal Design Power.

Intel 64 (Intel's x86-64 implementation) is not supported by Yonah. However, Intel 64 support is integrated in Yonah's successor, the mobile version of Core 2, code-named Merom.

Advantages and shortcomings

The Duo version of Intel Core (Yonah) includes two computational cores, providing performance per watt almost as good as any previous single core Intel processors. In battery-operated devices such as notebook computers, this translates to getting as much total work done per battery charge as with older computers, although the same total work may be done faster. When parallel computations and multiprocessing are able to utilize both cores, the Intel Core Duo delivers much higher peak speed compared to the single-core chips previously available for mobile devices. However, Core (Yonah) did not make any further improvements to single threaded processing performance over Dothan beyond before-mentioned SSE unit enhancements, and it was still only a 32-bit architecture, which proved to be particularly limiting for its server-oriented Sossaman derivative as x86-64 operating systems and software became increasingly prevalent.[ citation needed ]

According to Mobile Roadmaps from 2005, Intel's Yonah project originally focused more on reducing the power consumption of its P6-based Pentium M processor and aimed to reduce it by 50% for Intel Core (Yonah). Despite being less power efficient, Intel continued to market the NetBurst-based Mobile Pentium 4 processors for high performance applications until the Yonah project succeeded in extracting higher performance from its lower-power design. The Intel Core Duo's inclusion of two highly efficient cores on one chip can provide better performance than a Mobile Pentium 4 core, and with much better power-efficiency.

On July 27, 2006, Intel's Core 2 processors were released, which offered x86-64 compatibility and eventually displaced Yonah in production.

See also

Related Research Articles

<span class="mw-page-title-main">Athlon</span> Brand of microprocessors by AMD

Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by AMD. The original Athlon was the first seventh-generation x86 processor and the first desktop processor to reach speeds of one gigahertz (GHz). It made its debut as AMD's high-end processor brand on June 23, 1999. Over the years AMD has used the Athlon name with the 64-bit Athlon 64 architecture, the Athlon II, and Accelerated Processing Unit (APU) chips targeting the Socket AM1 desktop SoC architecture, and Socket AM4 Zen (microarchitecture). The modern Zen-based Athlon with a Radeon Graphics processor was introduced in 2019 as AMD's highest-performance entry-level processor.

<span class="mw-page-title-main">Celeron</span> Line of discontinued microprocessors made by Intel

Celeron is a discontinued series of low-end IA-32 and x86-64 computer microprocessor models targeted at low-cost personal computers, manufactured by Intel. The first Celeron-branded CPU was introduced on April 15, 1998, and was based on the Pentium II.

<span class="mw-page-title-main">Pentium 4</span> Brand by Intel

Pentium 4 is a series of single-core CPUs for desktops, laptops and entry-level servers manufactured by Intel. The processors were shipped from November 20, 2000 until August 8, 2008. It was removed from the official price lists starting in 2010, being replaced by Pentium Dual-Core.

<span class="mw-page-title-main">Pentium III</span> Line of desktop and mobile microprocessors produced by Intel

The Pentium III brand refers to Intel's 32-bit x86 desktop and mobile CPUs based on the sixth-generation P6 microarchitecture introduced on February 28, 1999. The brand's initial processors were very similar to the earlier Pentium II-branded processors. The most notable differences were the addition of the Streaming SIMD Extensions (SSE) instruction set, and the introduction of a controversial serial number embedded in the chip during manufacturing. The Pentium III is also a single-core processor.

<span class="mw-page-title-main">Athlon 64</span> Series of CPUs by AMD

The Athlon 64 is a ninth-generation, AMD64-architecture microprocessor produced by Advanced Micro Devices (AMD), released on September 23, 2003. It is the third processor to bear the name Athlon, and the immediate successor to the Athlon XP. The Athlon 64 was the second processor to implement the AMD64 architecture and the first 64-bit processor targeted at the average consumer. Variants of the Athlon 64 have been produced for Socket 754, Socket 939, Socket 940, and Socket AM2. It was AMD's primary consumer CPU, and primarily competed with Intel's Pentium 4, especially the Prescott and Cedar Mill core revisions.

<span class="mw-page-title-main">Pentium M</span> Family of Intel microprocessors

The Pentium M is a family of mobile 32-bit single-core x86 microprocessors introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. The Pentium M processors had a maximum thermal design power (TDP) of 5–27 W depending on the model, and were intended for use in laptops. They evolved from the core of the last Pentium III–branded CPU by adding the front-side bus (FSB) interface of Pentium 4, an improved instruction decoding and issuing front end, improved branch prediction, SSE2 support, and a much larger cache.

Tejas was a code name for Intel's microprocessor, which was to be a successor to the latest Pentium 4 with the Prescott core and was sometimes referred to as Pentium V. Jayhawk was a code name for its Xeon counterpart. The cancellation of the processors in May 2004 underscored Intel's historical transition of its focus on single-core processors to multi-core processors.

<span class="mw-page-title-main">Xeon</span> Line of Intel server and workstation processors

Xeon is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for error correction code (ECC) memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture (MCA). They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus, which replaced the older QuickPath Interconnect (QPI) bus.

<span class="mw-page-title-main">Pentium D</span> Family of Intel microprocessors

Pentium D is a range of desktop 64-bit x86-64 processors based on the NetBurst microarchitecture, which is the dual-core variant of the Pentium 4 manufactured by Intel. Each CPU comprised two cores. The brand's first processor, codenamed Smithfield and manufactured on the 90 nm process, was released on May 25, 2005, followed by the 65 nm Presler nine months later. The core implementation on the 90 nm "Smithfield" and later 65 nm "Presler" are designed differently but are functionally the same. The 90 nm "Smithfield" contains a single die, with two adjoined but functionally separate CPU cores cut from the same wafer. The later 65 nm "Presler" utilized a multi-chip module package, where two discrete dies each containing a single core reside on the CPU substrate. Neither the 90nm "Smithfield" nor the 65 nm "Presler" were capable of direct core to core communication, relying instead on the northbridge link to send information between the 2 cores.

<span class="mw-page-title-main">Socket 479</span>

Socket 479 (mPGA479M) is a CPU socket used by some Intel microprocessors. It is the socket used by the Pentium M and Celeron M mobile processors normally used in laptops, but has also been used with Tualatin-M Pentium III processors. The official naming by Intel is µFCPGA and µPGA479M.

<span class="mw-page-title-main">P6 (microarchitecture)</span> Intel processor microarchitecture

The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.

The Intel Core microarchitecture is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004 the new version of NetBurst (Prescott) needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004 Intel confirmed the cancellation of the next NetBurst, Tejas and Jayhawk. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M the choice of a short and efficient pipeline, delivering superior performance despite not reaching the high clocks of NetBurst.

<span class="mw-page-title-main">Intel Core 2</span> Processor family by Intel

Intel Core 2 was a processor family encompassing a range of Intel's mainstream 64-bit x86-64 single-, dual-, and quad-core microprocessors based on the Core microarchitecture. The single- and dual-core models are single-die, whereas the quad-core models comprise two dies, each containing two cores, packaged in a multi-chip module. The Core 2 range was the last flagship range of Intel desktop processors to use a front-side bus (FSB).

<span class="mw-page-title-main">Pentium</span> Brand of discontinued microprocessors produced by Intel

Pentium is a discontinued series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium was first released on March 22, 1993. The name "Pentium" is originally derived from the Greek word pente (πεντε), meaning "five", a reference to the prior numeric naming convention of Intel's 80x86 processors (8086–80486), with the Latin ending -ium since the processor would otherwise have been named 80586 using that convention.

<span class="mw-page-title-main">Socket M</span> Intel CPU interface

Socket M (mPGA478MT) is a CPU interface introduced by Intel in 2006 for the Intel Core line of mobile processors.

<span class="mw-page-title-main">Pentium Dual-Core</span> Line of CPUs by Intel

The Pentium Dual-Core brand was used for mainstream x86-architecture microprocessors from Intel from 2006 to 2009, when it was renamed to Pentium. The processors are based on either the 32-bit Yonah or 64-bit Merom-2M, Allendale, and Wolfdale-3M core, targeted at mobile or desktop computers.

<span class="mw-page-title-main">Conroe (microprocessor)</span> Code name for several Intel processors

Conroe is the code name for many Intel processors sold as Core 2 Duo, Xeon, Pentium Dual-Core and Celeron. It was the first desktop processor to be based on the Core microarchitecture, replacing the NetBurst microarchitecture based Cedar Mill processor. It has product code 80557, which is shared with Allendale and Conroe-L that are very similar but have a smaller L2 cache. Conroe-L has only one processor core and a new CPUID model. The mobile version of Conroe is Merom, the dual-socket server version is Woodcrest, the quad-core desktop version is Kentsfield and the quad-core dual-socket version is Clovertown. Conroe was replaced by the 45 nm Wolfdale processor.

<span class="mw-page-title-main">Merom (microprocessor)</span> Code name for various mobile Intel processors

Merom is the code name for various mobile Intel processors that are sold as Core 2 Duo, Core 2 Solo, Pentium Dual-Core and Celeron. It was the first mobile processor to be based on the Core microarchitecture, replacing the Enhanced Pentium M-based Yonah processor. Merom has the product code 80537, which is shared with Merom-2M and Merom-L that are very similar but have a smaller L2 cache. Merom-L has only one processor core and a different CPUID model. The desktop version of Merom is Conroe and the dual-socket server version is Woodcrest. Merom was manufactured in a 65 nanometer process, and was succeeded by Penryn, a 45 nm version of the Merom architecture. Together, Penryn and Merom represented the first 'tick-tock' in Intel's Tick-Tock manufacturing paradigm, in which Penryn was the 'tick' to Merom's 'tock'.

<span class="mw-page-title-main">Intel Core</span> Line of CPUs by Intel

Intel Core is a line of multi-core central processing units (CPUs) for midrange, embedded, workstation, high-end and enthusiast computer markets marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time of their introduction, moving the Pentium to the entry level. Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets.

References

  1. Marsal, Katie (June 23, 2005). "Inside Apple's Intel-based Dev Transition Kit (Photos)". AppleInsider . Retrieved June 13, 2007.
  2. "Intel® Virtualization Technology List". Intel corp.
  3. "Intel product specifications". www.intel.com.
  4. "HP Disables VT On Some Intel Laptops". Slashdot . January 16, 2007. Retrieved June 13, 2007.
  5. Persson, Jana (August 15, 2006). "nw8440 - VT disabled in bios". Hewlett-Packard. Archived from the original on January 13, 2009. Retrieved June 13, 2007.
  6. "FAQ - KVM". www.linux-kvm.org.