Aeromonas

Last updated

Aeromonas
Aeromonas hydrophila.jpg
Aeromonas hydrophila
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Aeromonadales
Family: Aeromonadaceae
Genus: Aeromonas
Stanier 1943
Species

A. aquariorum
A. allosaccharophila
A. aquatica [1]
A. australiensis
A. bestiarum
A. bivalvium
A. caviae
A. dhakensis [1]
A. diversa
A. encheleia
A. enteropelogenes
A. eucrenophila
A. finlandensis [1]
A. fluvialis
A. hydrophila
A. jandaei
A. lacus [1]
A. media
A. molluscorum
A. piscicola
A. popoffii
A. punctata
A. rivipollensis [1]
A. rivuli
A. salmonicida
A. sanarellii
A. schubertii
A. sharmana
A. simiae
A. taiwanensis
A. tecta
A. veronii

Contents

Aeromonas is a genus of Gram-negative, facultative anaerobic, rod-shaped, bacteria that morphologically resemble members of the family Enterobacteriaceae. Most of the 14 described species have been associated with human diseases. The most important pathogens are A. hydrophila , A. caviae , and A. veronii biovar sobria. The organisms are ubiquitous in fresh and brackish water. [2]

They group with the gamma subclass of the Proteobacteria. [3]

Two major diseases associated with Aeromonas are gastroenteritis and wound infections, with or without bacteremia. Gastroenteritis typically occurs after the ingestion of contaminated water or food, whereas wound infections result from exposure to contaminated water. In its most severe form, Aeromonas spp. can cause necrotizing fasciitis, which is life-threatening, usually requiring treatment with antibiotics and even amputation. [4]

Although some potential virulence factors (e.g. endotoxins, hemolysins, enterotoxins, adherence factors) have been identified, their precise roles are unknown. [5] [6]

Association with human diarrhea and human intestinal infections

Literature exists on this subject, but many papers have not adequately studied the causal role of the Aeromonas strain(s) that were isolated from the cases that were studied. The presence of an Aeromonas strain in a fecal specimen does not prove or even imply that the strain was causing the diarrhea. Gastrointestinal disease in children is usually an acute, severe illness, whereas that in adults tends to be chronic diarrhea. Severe Aeromonas gastroenteritis resembles shigellosis, with blood and leukocytes in the stool. Acute diarrheal disease is self-limited, and only supportive care is indicated in affected patients.

Wound infection

Wound infections are the second-most common type of human infection associated with Aeromonas. [7] They are associated with penetrating wounds or abrasions that place the wound in contact with fresh water or soil. [7]

Medicinal leeches

Aeromonas species are endosymbionts of Hirudo medicinalis , a species of leech that is FDA-approved for use in vascular surgery such as skin grafts and flaps. [8] [9] Aeromonas aides leeches in digesting blood meals. [10] H. medicinalis used after surgery has led to Aeromonas infections, most commonly with A. veronii. [8] This can present as a local cellulitis, though can progress to subcutaneous abscess and sepsis. [8]

Respiratory infection

Aeromonas species have also been associated with pneumonia after near-drowning events, especially in fresh water. [11] Most commonly, this has been reported with A. hydrophila, though the ability of clinical laboratories to correctly identify species of Aeromonas has been limited. [11] Aeromonas pneumonia due to episodes of near-drowning are frequently complicated by bacteremia and death. [11]

Antimicrobial therapy

Aeromonas species are resistant to penicillins, most cephalosporins, and erythromycin. Ciprofloxacin is consistently active against their strains in the U.S. and Europe, but resistant cases have been reported in Asia. [ citation needed ]

Unchlorinated drinking-water supply

[12] Aeromonas spp. are ubiquitous in river and freshwater lakes and have frequently been observed in drinking water systems. An interest in Aeromonas in nonchlorinated drinking water in the Netherlands was initiated from the 1980s, after the observation of a sudden increase of Aeromonas numbers in drinking water at the municipal Dune Waterworks of The Hague in 1984. Extensive studies with phenotyping and genotyping methods demonstrated that Aeromonas isolates from fresh and drinking water environments were phenotypically and genotypically different from Aeromonas isolates from patients. In response to these studies, the Environmental Protection Agency (EPA) in the United States removed Aeromonas from the contaminant candidate list (CCL) in 2009. In the Netherlands, the presence of Aeromonas in drinking water is currently not considered a health-related problem. Aeromonas is only a minor part (<0.01%) of the diverse autochthonous microflora. Drinking water companies limit the multiplication of bacteria, protozoans and invertebrates (all natural parts of drinking-water distribution systems [13] ). The authorities in the Netherlands included Aeromonas in the Dutch Drinking Water Decree as an additional operational indicator (beside heterotrophic plate count [HPC]) for microbial regrowth, limited to 1,000 CFU/100 ml, obtained by growth on specific ampicillin-dextrin agar plates at 30 °C. When drinking water companies do not comply with this standard, they have to minimize the growth conditions. A recent study on indicator parameters for regrowth concluded that HPCs and aeromonads are more reliable indicators for regrowth in drinkwater distribution systems the Netherlands than ATP and bacterial cell numbers. Another field study in the Netherlands showed that noncompliance with the Aeromonas standard in two distribution systems coincided with increased HPCs (within the limits of the Dutch Drinking Water Decree), occasional coliform regrowth, and enhanced numbers of macroinvertebrates (e.g., water lice). Furthermore, it has been observed that Aeromonas isolates are mainly associated with sediment in the distribution system and to a lesser extent with drinking water, but not with the biofilm on the pipe wall, demonstrating that sediment or loose deposits (consisting of small and larger [in]organic and biological suspended solids, including invertebrates) are the main niche for Aeromonas. The results from these studies, thus, show that Aeromonas is still useful as a regrowth indicator in nonchlorinated drinking-water.

Etymology

The name Aeromonas derives from:
Greek aer, aeros (ἀήρ, ἀέρος), air, gas; and -monas|monas (μονάς), unit, monad; gas(-producing) monad. [14]

Members of the genus Aeromonas can be referred to as aeromonads (viz. trivialisation of names).

Related Research Articles

<i>Rotavirus</i> Specific genus of RNA viruses

Rotavirus is a genus of double-stranded RNA viruses in the family Reoviridae. Rotaviruses are the most common cause of diarrhoeal disease among infants and young children. Nearly every child in the world is infected with a rotavirus at least once by the age of five. Immunity develops with each infection, so subsequent infections are less severe. Adults are rarely affected. There are nine species of the genus, referred to as A, B, C, D, F, G, H, I and J. Rotavirus A, the most common species, causes more than 90% of rotavirus infections in humans.

<span class="mw-page-title-main">Norovirus</span> Type of viruses that cause gastroenteritis

Norovirus, sometimes referred to as the winter vomiting disease, is the most common cause of gastroenteritis. Infection is characterized by non-bloody diarrhea, vomiting, and stomach pain. Fever or headaches may also occur. Symptoms usually develop 12 to 48 hours after being exposed, and recovery typically occurs within one to three days. Complications are uncommon, but may include dehydration, especially in the young, the old, and those with other health problems.

<i>Vibrio</i> Genus of bacteria and the disease it can cause

Vibrio is a genus of Gram-negative bacteria, possessing a curved-rod (comma) shape, several species of which can cause foodborne infection, usually associated with eating undercooked seafood. Being highly salt tolerant and unable to survive in fresh water, Vibrio spp. are commonly found in various salt water environments. Vibrio spp. are facultative anaerobes that test positive for oxidase and do not form spores. All members of the genus are motile. They are able to have polar or lateral flagellum with or without sheaths. Vibrio species typically possess two chromosomes, which is unusual for bacteria. Each chromosome has a distinct and independent origin of replication, and are conserved together over time in the genus. Recent phylogenies have been constructed based on a suite of genes.

<i>Hirudo medicinalis</i> Species of annelid worm

Hirudo medicinalis, the European medicinal leech, is one of several species of leeches used as "medicinal leeches".

<span class="mw-page-title-main">Foodborne illness</span> Illness from eating spoiled food

Foodborne illness is any illness resulting from the contamination of food by pathogenic bacteria, viruses, or parasites, as well as prions, and toxins such as aflatoxins in peanuts, poisonous mushrooms, and various species of beans that have not been boiled for at least 10 minutes.

<span class="mw-page-title-main">Gastroenteritis</span> Inflammation of the stomach and small intestine

Gastroenteritis, also known as infectious diarrhea or simply as gastro, is an inflammation of the gastrointestinal tract including the stomach and intestine. Symptoms may include diarrhea, vomiting, and abdominal pain. Fever, lack of energy, and dehydration may also occur. This typically lasts less than two weeks. Although it is not related to influenza, in the U.S. it is sometimes called the "stomach flu".

Plesiomonas shigelloides is a species of bacteria and the only member of its genus. It is a Gram-negative, rod-shaped bacterium which has been isolated from freshwater, freshwater fish, shellfish, cattle, goats, swine, cats, dogs, monkeys, vultures, snakes, toads and humans. It is considered a fecal coliform. P. shigelloides is a global distributed species, found globally outside of the polar ice caps.

<span class="mw-page-title-main">Coliform bacteria</span> Group of bacterial species

Coliform bacteria are defined as either motile or non-motile Gram-negative non-spore forming bacilli that possess β-galactosidase to produce acids and gases under their optimal growth temperature of 35–37 °C. They can be aerobes or facultative aerobes, and are a commonly used indicator of low sanitary quality of foods, milk, and water. Coliforms can be found in the aquatic environment, in soil and on vegetation; they are universally present in large numbers in the feces of warm-blooded animals as they are known to inhabit the gastrointestinal system. While coliform bacteria are not normally causes of serious illness, they are easy to culture, and their presence is used to infer that other pathogenic organisms of fecal origin may be present in a sample, or that said sample is not safe to consume. Such pathogens include disease-causing bacteria, viruses, or protozoa and many multicellular parasites.

<i>Vibrio parahaemolyticus</i> Species of bacterium

Vibrio parahaemolyticus (V. parahaemolyticus) is a curved, rod-shaped, Gram-negative bacterial species found in the sea and in estuaries which, when ingested, may cause gastrointestinal illness in humans. V. parahaemolyticus is oxidase positive, facultatively aerobic, and does not form spores. Like other members of the genus Vibrio, this species is motile, with a single, polar flagellum.

<span class="mw-page-title-main">Astrovirus</span> Family of viruses

Astroviruses (Astroviridae) are a type of virus that was first discovered in 1975 using electron microscopes following an outbreak of diarrhea in humans. In addition to humans, astroviruses have now been isolated from numerous mammalian animal species and from avian species such as ducks, chickens, and turkey poults. Astroviruses are 28–35 nm diameter, icosahedral viruses that have a characteristic five- or six-pointed star-like surface structure when viewed by electron microscopy. Along with the Picornaviridae and the Caliciviridae, the Astroviridae comprise a third family of nonenveloped viruses whose genome is composed of plus-sense, single-stranded RNA. Astrovirus has a non-segmented, single stranded, positive sense RNA genome within a non-enveloped icosahedral capsid. Human astroviruses have been shown in numerous studies to be an important cause of gastroenteritis in young children worldwide. In animals, Astroviruses also cause infection of the gastrointestinal tract but may also result in encephalitis, hepatitis (avian) and nephritis (avian).

Aeromonas veronii is a Gram-negative, rod-shaped bacterium found in fresh water and in association with animals. It can be a pathogen of humans and a beneficial symbiont of leeches. In humans A. veronii can cause diseases ranging from wound infections and diarrhea to sepsis in immunocompromised patients. Humans treated with medicinal leeches after vascular surgery can be at risk for infection from A. veronii and are commonly placed on prophylactic antibiotics. Most commonly ciprofloxacin is used but there have been reports of resistant strains leading to infection. In leeches, this bacterium is thought to function in the digestion of blood, provision of nutrients, or preventing other bacteria from growing.

<i>Aeromonas hydrophila</i> Species of heterotrophic, Gram-negative, bacterium

Aeromonas hydrophila is a heterotrophic, Gram-negative, rod-shaped bacterium mainly found in areas with a warm climate. This bacterium can be found in fresh or brackish water. It can survive in aerobic and anaerobic environments, and can digest materials such as gelatin and hemoglobin. A. hydrophila was isolated from humans and animals in the 1950s. It is the best known of the species of Aeromonas. It is resistant to most common antibiotics and cold temperatures and is oxidase- and indole-positive. Aeromonas hydrophila also has a symbiotic relationship as gut flora inside of certain leeches, such as Hirudo medicinalis.

<i>Elizabethkingia meningoseptica</i> Species of bacterium

Elizabethkingia meningoseptica is a Gram-negative, rod-shaped bacterium widely distributed in nature. It may be normally present in fish and frogs; it may be isolated from chronic infectious states, as in the sputum of cystic fibrosis patients. In 1959, American bacteriologist Elizabeth O. King was studying unclassified bacteria associated with pediatric meningitis at the Centers for Disease Control and Prevention in Atlanta, when she isolated an organism that she named Flavobacterium meningosepticum. In 1994, it was reclassified in the genus Chryseobacterium and renamed Chryseobacterium meningosepticum(chryseos = "golden" in Greek, so Chryseobacterium means a golden/yellow rod similar to Flavobacterium). In 2005, a 16S rRNA phylogenetic tree of Chryseobacteria showed that C. meningosepticum along with C. miricola were close to each other but outside the tree of the rest of the Chryseobacteria and were then placed in a new genus Elizabethkingia named after the original discoverer of F. meningosepticum.

<i>Aeromonas salmonicida</i> Species of bacterium

Aeromonas salmonicida is a pathogenic bacterium that severely impacts salmonid populations and other species. It was first discovered in a Bavarian brown trout hatchery by Emmerich and Weibel in 1894. Aeromonas salmonicida's ability to infect a variety of hosts, multiply, and adapt, make it a prime virulent bacterium. A. salmonicida is an etiological agent for furunculosis, a disease that causes sepsis, haemorrhages, muscle lesions, inflammation of the lower intestine, spleen enlargement, and death in freshwater fish populations. It is found worldwide with the exception of South America. The major route of contamination is poor water quality; however, it can also be associated stress factors such as overcrowding, high temperatures, and trauma. Spawning and smolting fish are prime victims of furunculosis due to their immunocompromised state of being.

Aeromonas infections include skin infections such as cellulitis, pustules, and furuncles. Aeromonas species can also cause gastroenteritis.

<span class="mw-page-title-main">Aerolysin</span>

In molecular biology, aerolysin is a cytolytic pore-forming toxin exported by Aeromonas hydrophila, a Gram-negative bacterium associated with diarrhoeal diseases and deep wound infections. It is also produced by the caterpillar of the moth Megalopyge opercularis, sometimes called the Tree Asp. The mature toxin binds to eukaryotic cells and aggregates to form holes leading to the destruction of the membrane permeability barrier and osmotic lysis. The structure of proaerolysin has been determined to 2.8A resolution and shows the protoxin to adopt a novel fold. Images of an aerolysin oligomer derived from electron microscopy have helped to construct a model of the protein in its heptameric conformation, and to outline a mechanism by which this assembly might insert into lipid bilayers to form ion channels.

<span class="mw-page-title-main">Leech collector</span>

A leech collector, leech gatherer, or leech finder was a person occupied with procuring medicinal leeches, which were in growing demand in 19th-century Europe. Leeches were used in bloodletting but were not easy for medical practitioners to obtain. The collector would sometimes gather the leeches by attracting them to the legs of animals, often old horses. More commonplace was for the collector to use their own legs, gathering the leech after it had finished sucking enough blood. Many in the profession suffered from the effects of the loss of blood and infections spread by the leeches.

Aeromonas dhakensis is a Gram-negative bacterium first isolated from aquariums in Portugal in 2005. The species is globally distributed in aquatic environments, like other species in the genus Aeromonas.

Aeromonas schubertii is a Gram-negative, rod-shaped bacterium. Its type strain is ATCC 43700. It is differentiated from other species by not metabolising D-mannitol. It is resistant to ampicillin and carbenicillin and susceptible to most other agents. It causes infection in several species, including humans and Channa argus.

<i>Hirudo verbana</i> Species of leech

Hirudo verbana is a species of leech.

References

  1. 1 2 3 4 5 Parte, A. C. "Aeromonas". LPSN .
  2. Graf J, ed. (2015). Aeromonas. Caister Academic Press. ISBN   978-1-908230-56-0.
  3. Martinez-Murcia AJ, Benlloch S, Collins MD (July 1992). "Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations". International Journal of Systematic and Evolutionary Microbiology. 42 (3): 412–21. doi: 10.1099/00207713-42-3-412 . PMID   1380289.
  4. Minnaganti, Venkat R.; Patel, Pankaj J.; Iancu, Dan; Schoch, Paul E.; Cunha, Burke A. (2000). "Necrotizing fasciitis caused by Aeromonas hydrophila". Heart & Lung: The Journal of Acute and Critical Care. 29 (4): 306–308. doi: 10.1067/mhl.2000.106723 . ISSN   0147-9563. PMID   10900069.
  5. Ghenghesh, Khalifa Sifaw; Ahmed, Salwa F.; Cappuccinelli, Piero; Klena, John D. (2014-09-09). "Genospecies and virulence factors of Aeromonas species in different sources in a North African country". The Libyan Journal of Medicine. 9 (1): 10.3402/ljm.v9.25497. doi:10.3402/ljm.v9.25497. ISSN   1993-2820. PMC   4161726 . PMID   25216211.
  6. Igbinosa, Isoken H.; Igumbor, Ehimario U.; Aghdasi, Farhad; Tom, Mvuyo; Okoh, Anthony I. (2012-06-04). "Emerging Aeromonas Species Infections and Their Significance in Public Health". The Scientific World Journal. 2012: 625023. doi: 10.1100/2012/625023 . ISSN   2356-6140. PMC   3373137 . PMID   22701365.
  7. 1 2 Parker, Jennifer L.; Shaw, Jonathan G. (2011). "Aeromonas spp. clinical microbiology and disease". Journal of Infection. 62 (2): 109–118. doi:10.1016/j.jinf.2010.12.003. PMID   21163298.
  8. 1 2 3 Whitaker, Iain S.; Kamya, Cyril; Azzopardi, Ernest A.; Graf, Joerg; Kon, Moshe; Lineaweaver, William C. (1 November 2009). "Preventing infective complications following leech therapy: Is practice keeping pace with current research?" (PDF). Microsurgery. 29 (8): 619–625. doi:10.1002/micr.20666. ISSN   1098-2752. PMID   19399888. S2CID   19575531. Archived from the original (PDF) on 1 November 2018. Retrieved 29 January 2019.
  9. "FDA approves leeches as medical devices". msnbc.com. Retrieved 28 January 2016.
  10. "Aeromonas-Hirudo medicinalis symbiosis". sp.uconn.edu. Archived from the original on 26 September 2006. Retrieved 28 January 2016.
  11. 1 2 3 Ender, Peter T.; Dolan, Matthew J. (1 October 1997). "Pneumonia Associated with Near-Drowning". Clinical Infectious Diseases. 25 (4): 896–907. doi: 10.1086/515532 . ISSN   1058-4838. PMID   9356805.
  12. Nikki van Bel, Paul van der Wielen, Bart Wullings, Jeroen van Rijn, Ed van der Mark, Henk Ketelaars, Wim Hijnen (2021) Aeromonas Species from Nonchlorinated Distribution Systems and Their Competitive Planktonic Growth in Drinking Water https://journals.asm.org/doi/10.1128/AEM.02867-20
  13. Van Lieverloo, J.H.M., Van der Kooij, D. and Hoogenboezem, W. (2002). ‘Invertebrates and Protozoa (Free-living) in Drinking Water Distribution Systems’. In: Bitton, G. (ed.). ‘Encyclopedia of Environmental Microbiology’. John Wiley & Sons, New York, pp. 1718-1733. https://www.wiley.com/en-us/Encyclopedia+of+Environmental+Microbiology%2C+6+Volume+Set-p-9780471354505)
  14. Aeromonas entry in LPSN ; Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". International Journal of Systematic and Evolutionary Microbiology. 47 (2): 590–2. doi: 10.1099/00207713-47-2-590 . PMID   9103655.

Further reading