Athyrium yokoscense

Last updated

Athyrium yokoscense
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Division: Polypodiophyta
Class: Polypodiopsida
Order: Polypodiales
Suborder: Aspleniineae
Family: Athyriaceae
Genus: Athyrium
Species:
A. yokoscense
Binomial name
Athyrium yokoscense
(Fr. & Sav.) C. Ch.

Athyrium yokoscense, commonly known as Asian common ladyfern [1] in English and as Hebino-negoza in Japanese, is a species of fern in the family Athyriaceae. These tough plants live primarily in and around mine sites and thrive in soils contaminated with high concentrations of heavy metals, such as zinc, cadmium, lead, and copper. [2] A. yokoscense is indigenous to Japan, Korea, eastern Siberia and northeastern China and has been known for centuries to tolerate phytotoxic mining sites. [3] The predominance and concentration of this fern species at a particular region was used to identify potential mining sites. [4] The primary potential of A. yokoscense is in its phytoremediative ability to accumulate toxic metals from soils contaminated with heavy metals, so it may have some long-term commercial importance. No medicinal or culinary values of this fern species have been studied or confirmed.

Contents

Morphology

A. yokoscense is similar to other species in the genus, Athyrium , and family, Athyriaceae. The plant typically grows to more than 0.2 metres (7.9 in) high and can tolerate high levels of heavy metals (arsenic, lead, cadmium, zinc, copper), which under many circumstances would kill other plants. [3] This fern leaves resemble typical fern leaves. Not many publications and research have been made on the reproductive cycle of this fern species, but it is similar to the other ferns in the same genus. According to mygarden.net.au, these ferns "grow in heavy clay soils and prefer a moist sheltered site with moderately high atmosphere". Some ferns have been reported to contain carcinogens and others contain thiaminase, which robs the body of its vitamin B. This fern is generally not edible. [5] [ better source needed ]

Distribution and habitat

Athyrium yokoscense is found in and near mining sites across Japan, Korea, northeastern China, and eastern Siberia. It grows in metalliferous mining slag heaps, damp grounds, flat plains, as well as in thick woodlands and mountains. The abundance of this plant is an indicator of potential heavy metal-rich mines. [3]

Phytoremediation

The past decades of research into contaminated soil clean-up led scientists to adopt a greener way to solve this problem. Phytoremediation is a relatively new theory and practice to use plants to clean up soil contaminated with heavy metals instead of the need for heavy (and potentially toxic) chemicals. Athyrium yokoscense has been known for centuries to survive and thrive in and near mining sites in Japan. These mining sites contain soils with high concentrations of metal, including copper, cadmium, lead, arsenic, and zinc. No one knew the mechanism of how this fern species survive a toxic environment like this. [6] Recently, with the green movements and environmental concerns for revitalizing mining sites and heavily contaminated fields, more researchers and industrialists are moving into a greener way of cleaning up the soil. Many papers have been published about the effects of heavy metals on the growth and reproduction of this fern, as well as the mechanism involved in its survival in these toxic environments.

Traditional toxic metal clean-ups are expensive and painstaking processes involving even more dangerous chemicals, but using plants to clean up the environment is greener, cheaper and may be more efficient, as well. [2] A. yokoscense has the ability to not only survive the toxic heavy-lead environments, but also accumulate these heavy metals as well. This is extremely useful because harvesting these hyperaccumulator ferns will also detoxify the soil they live in. Studies have shown that this fern species accumulates heavy metal in its rhizoidal tissues (the fern's stem, which also acts like the plant's roots) during its sporophyte stage and in its prothallial tissues in its gametophyte stage. [6]

It is believed that A. yokoscense's proanthocyanidins (condensed tannins) have a potential ability to chelate heavy metals, but this has not been confirmed yet. High levels of proanthocyanidins were found in both the leaves, as well as the rhizoids, yet only the rhizoids accumulate extremely high levels of heavy metals. [6] Some researchers have found that these ferns do not accumulate heavy metal in the cells, but rather, in the cell walls. [4]

Related Research Articles

<span class="mw-page-title-main">Cadmium</span> Chemical element with atomic number 48 (Cd)

Cadmium is a chemical element; it has symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of its compounds, and like mercury, it has a lower melting point than the transition metals in groups 3 through 11. Cadmium and its congeners in group 12 are often not considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states. The average concentration of cadmium in Earth's crust is between 0.1 and 0.5 parts per million (ppm). It was discovered in 1817 simultaneously by Stromeyer and Hermann, both in Germany, as an impurity in zinc carbonate.

<span class="mw-page-title-main">Toxic heavy metal</span> Category of substances

A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury and lead, all of which appear in the World Health Organization's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, silver, antimony and thallium.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.

Itai-itai disease was the name given to the mass cadmium poisoning of Toyama Prefecture, Japan, starting around 1912. The term "itai-itai disease" was coined by locals for the severe pains people with the condition felt in the spine and joints. Cadmium (Cd) poisoning can also cause softening of the bones and kidney failure. Effective treatments involve the use of chelators to promote urinary excretion of Cd. The cadmium was released into rivers by mining companies in the mountains, which were successfully sued for the damage. Remediation efforts in the affected region have been ongoing since 1972 and were mostly complete as of 2012. Monetary costs of the cleanup have been paid for in part by Japan's national government, Mitsui Mining, and the Gifu and Toyama prefectural governments. Itai-itai disease is known as one of the Four Big Pollution Diseases of Japan.

<span class="mw-page-title-main">Phytoremediation</span> Decontamination technique using living plants

Phytoremediation technologies use living plants to clean up soil, air and water contaminated with hazardous contaminants. It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". The term is an amalgam of the Greek phyto (plant) and Latin remedium. Although attractive for its cost, phytoremediation has not been demonstrated to redress any significant environmental challenge to the extent that contaminated space has been reclaimed.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

<span class="mw-page-title-main">Mycoremediation</span> Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

<span class="mw-page-title-main">Hyperaccumulator</span>

A hyperaccumulator is a plant capable of growing in soil or water with high concentrations of metals, absorbing these metals through their roots, and concentrating extremely high levels of metals in their tissues. The metals are concentrated at levels that are toxic to closely related species not adapted to growing on the metalliferous soils. Compared to non-hyperaccumulating species, hyperaccumulator roots extract the metal from the soil at a higher rate, transfer it more quickly to their shoots, and store large amounts in leaves and roots. The ability to hyperaccumulate toxic metals compared to related species has been shown to be due to differential gene expression and regulation of the same genes in both plants.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Phytotoxicity</span> Toxic effect by a compound on plant growth

Phytotoxicity describes any adverse effects on plant growth, physiology, or metabolism caused by a chemical substance, such as high levels of fertilizers, herbicides, heavy metals, or nanoparticles. General phytotoxic effects include altered plant metabolism, growth inhibition, or plant death. Changes to plant metabolism and growth are the result of disrupted physiological functioning, including inhibition of photosynthesis, water and nutrient uptake, cell division, or seed germination.

This list covers hyperaccumulators, plant species which accumulate, or are tolerant of radionuclides, hydrocarbons and organic solvents, and inorganic compounds.

<span class="mw-page-title-main">Metal toxicity</span> Harmful effects of certain metals

Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. It is often thought that only heavy metals can be toxic, but lighter metals such as beryllium and lithium may also be in certain circumstances. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, a technique involving the administration of chelation agents to remove metals from the body.

<span class="mw-page-title-main">Environmental toxicology</span> Multidisciplinary field of science

Environmental toxicology is a multidisciplinary field of science concerned with the study of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology is a subdiscipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels.

<span class="mw-page-title-main">Tar Creek Superfund site</span>

Tar Creek Superfund site is a United States Superfund site, declared in 1983, located in the cities of Picher, Douthat and Cardin, Ottawa County, in northeastern Oklahoma. From 1900 to the 1960s lead mining and zinc mining companies left behind huge open chat piles that were heavily contaminated by these metals, cadmium, and others. Metals from the mining waste leached into the soil, and seeped into groundwater, ponds, and lakes. Because of the contamination, Picher children have suffered elevated lead, zinc and manganese levels, resulting in learning disabilities and a variety of other health problems. The EPA declared Picher to be one of the most toxic areas in the United States.

<span class="mw-page-title-main">Environmental effects of mining</span> Environmental problems from uncontrolled mining

Environmental effects of mining can occur at local, regional, and global scales through direct and indirect mining practices. Mining can cause erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by chemicals emitted from mining processes. These processes also affect the atmosphere through carbon emissions which contributes to climate change.

Phytoextraction is a subprocess of phytoremediation in which plants remove dangerous elements or compounds from soil or water, most usually heavy metals, metals that have a high density and may be toxic to organisms even at relatively low concentrations. The heavy metals that plants extract are toxic to the plants as well, and the plants used for phytoextraction are known hyperaccumulators that sequester extremely large amounts of heavy metals in their tissues. Phytoextraction can also be performed by plants that uptake lower levels of pollutants, but due to their high growth rate and biomass production, may remove a considerable amount of contaminants from the soil.

Simultaneously extracted metals/Acid-volatile sulfide (SEM-AVS) is an approach used in the field of aquatic toxicology to assess the potential for metal ions found in sediment to cause toxic effects in organisms dwelling in the sediment. In this approach, the amounts of several heavy metals in a sediment sample are measured in a laboratory; at the same time, the amount of acid-volatile sulfide is determined. Based on the chemical interactions between heavy metals (SEM) and acid-volatile sulfide (AVS), the concentrations of these two components can be used to assess the potential for toxicity to sediment-dwelling organisms.

Mycorrhizal amelioration of heavy metals or pollutants is a process by which mycorrhizal fungi in a mutualistic relationship with plants can sequester toxic compounds from the environment, as a form of bioremediation.

<span class="mw-page-title-main">Risdon Zinc Works</span> Zinc refinery in Lutana, Tasmania, Australia

Risdon Zinc Works is a major zinc refinery located in Lutana, a suburb of Hobart, Tasmania, Australia. The smelter is one of the world's largest in terms of production volume, producing over 280,000 tonnes annually of high-grade zinc, primarily as die-cast alloys and continuous galvanising-grade alloys. These products are exported for global markets and utilised in a wide range of industries and products, from building and infrastructure to transportation, business equipment, communications, electronics, and consumer goods. The facility produces zinc using the Roast, Leach, Electrowinning (RLE) method, creating leach byproducts, including cadmium, gypsum, copper sulphate, lead sulphate, sulphuric acid, paragoethite and leach concentrate. The refinery has been owned and operated by the global multi-metals business Nyrstar since 2007. Nyrstar Hobart works closely with the Nyrstar Port Pirie multi-metals smelter in South Australia. The facility is Tasmania's largest exporter, contributing 25% of the state's overall export value in 2013.

References

  1. English Names for Korean Native Plants (PDF). Pocheon: Korea National Arboretum. 2015. p. 370. ISBN   978-89-97450-98-5. Archived from the original (PDF) on 25 May 2017. Retrieved 26 January 2017 via Korea Forest Service.
  2. 1 2 Morishita T, Boratynski JK (1992). "Accumulation of cadmium and other metals in organs of plants growing around metal smelters in Japan". Soil Science and Plant Nutrition. 38 (4): 781–785. doi: 10.1080/00380768.1992.10416712 .
  3. 1 2 3 Van TK, Kang Y, Fukui T, Sakurai K, Iwasaki K, Aikawa Y, Phuong NM (2006). "Arsenic and heavy metal accumulation by Athyrium yokoscense from contaminated soils". Soil Science and Plant Nutrition. 52 (6): 701–710. doi:10.1111/j.1747-0765.2006.00090.x.
  4. 1 2 Yoshihara T, Tsunokawa K, Miyano Y, Arashima Y, Hodoshima H, Shoji K, Shimada H, Goto F (2005). "Induction of callus from a metal hypertolerant fern, Athyrium yokoscense, and evaluation of its cadmium tolerance and accumulation capacity". Plant Cell Reports. 23 (8): 579–585. doi:10.1007/s00299-004-0877-9.
  5. "Athyrium yokoscense". My Garden. Retrieved 2012-04-29.
  6. 1 2 3 Kamachi H, Komori I, Tamura H, Sawa Y, Karahara I, Honma Y, Wada N, Kawabata T, Matsuda K, Ikeno S, Noguchi M, Inoue H (2005). "Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense". Journal of Plant Research. 118 (2): 137–145. doi:10.1007/s10265-005-0202-x. PMID   15843865.