Baudoinia compniacensis

Last updated

Baudoinia compniacensis
Scotland Baudoinia.jpg
Photomicrograph of colony growing on Modified Leonian's agar
Scientific classification
Kingdom:
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Species:
B. compniacensis
Binomial name
Baudoinia compniacensis
(Richon) J.A. Scott & Unter.
Synonyms

Torula compniacensisRichon. 1881

Baudoinia compniacensis is a sac fungus which has been observed on a variety of substrates in the vicinity of distilleries, spirits maturation facilities, bonded warehouses, and bakeries. The fungus is a habitat colonist with a preference for airborne alcohol, earning it the nickname whiskey fungus. [1] [2]

Contents

Description

Baudoinia compniacensis can be identified by its black, effused mycelium that can be velvety or crust-like. It features hyphae which are vegetative, dark brown, thick-walled, and often moniliform; although it lacks distinctive conidiophores. Conidiogenous cells can be found integrated within vegetative hyphae. Its conidia are dry, nonseptate or uniseptate, at the median. The conidia are thick-walled, globose to barrel-shaped, brown to black, and typically found with coarse surface ornamentation, dehiscing by schizolysis. Ramoconidia are absent. Colonies on modified Leonian's agar grow slowly and are dark in pigmentation. Synanamorphs are absent during its asexual reproduction stages. The presence of teleomorphs is unknown. [1]

Nutrition

Baudoinia species use ethanol for their carbon nutrition, however growth rates suggest that this is not their only source of calories. Ethanol in vapour form also accelerates the growth of the fungus and stimulates spore germination. The ability to withstand high temperatures and therefore colonize habitats such as roofing, may be explained by the observation that ethanol vapour stimulates the formation of special heat-protective proteins that prevent cells from being killed under these relatively extreme conditions. [3]

Ecology

Baudoinia compniacensis is black in colour and is partly responsible for the frequently observed phenomenon of 'Warehouse Staining', reported originally from the walls of buildings near brandy maturation warehouses in Cognac, France. Baudoinia compniacensis is a cosmopolitan colonist of outdoor surfaces subjected to extreme daily temperature shifts, elevated high relative humidity, periodic wetting, and ambient airborne ethanol. [3] It is known from a wide range of substrates. For example, the UAMH Centre for Global Microfungal Biodiversity [4] lists isolates recovered from tree bark, [lower-alpha 1] concrete, [lower-alpha 2] PVC plastic, [lower-alpha 3] galvanized roofing, [lower-alpha 4] masonry, [lower-alpha 5] and stone. [lower-alpha 6]

Baudoinia compniacensis is not uniquely associated with spirit maturation and manufacture as one sample that was examined came from a commercial bakery, although the fermentation byproducts of yeast include ethanol and its vapors. Ethanol vapor appears to be important in habitat determinant and Baudoinia species may occur in association with natural fermentative processes, such as seasonal fruit drops, bogs, natural composts, etc. [1] B. compniacensis may also occur around places where automotive fuel is stored or transferred, as ethanol is required to be blended with gasoline in most countries.

It has been recorded as a food source of snails and slugs through the radula marks left following grazing. [1]

Distribution

B. compniacensis was first investigated in 1872 when Michel Charles Durieu de Maisonneuve and Casimir Roumeguère examined a black, sooty growth found on the walls and roof tiles of buildings near distilleries in Cognac, France, at the instigation of the French pharmacist, Antonin Baudoin. [1] It has been widely recorded in Asia, Europe, and the Americas. [1] During the process of aging whiskey and certain other liquors, a portion evaporates, colloquially called the "Angel's Share"; this airborne alcohol near barrelhouses can lead to growth of Baudoinia compniacensis in the area, hence the term "whiskey fungus." [5]

B. compniacensis on buildings and plants

The fungus often forms a black coating layer on tree bark and leaves. However, this does not seem to harm the plants by blocking the lenticels or significantly reduce their growth rates. Deciduous species also develop new leaves annually, rendering it less important when older leaves are covered by the growths.

The fungus can be removed from buildings using high pressure water jets, bleach, etc. According to a report from the Kentucky government, it has not been shown to cause anything other than cosmetic effects thanks to its mode of nutrition via the carboniferous atmosphere, rather than the decay of building materials in general. [2] Mosses, lichens and algae also grow on solid vertical surfaces, and slopes in the same fashion as the Angel's Share fungus and do not damage the infrastructure of built structures. However, there have been harsher reports as well. James A. Scott, the researcher at the University of Toronto who has studied the fungus and named the genus, said that the fungus is destructive and can damage property. He wrote "It wrecks patio furniture, house siding, almost any outdoor surface. I've seen trees choked to death by it. It is a small mercy that it does not also appear to have a negative impact on human health." [5]

Genome sequence

Genomic information
NCBI genome ID 40216
Ploidy haploid
Genome size 21.88 Mb
Year of completion 2011

The genome of B. panamericana was completed by the United States Department of Energy's Joint Genome Institute in 2011, using Roche (454), Sanger fosmid, and Illumina sequence data. The completed assembly is 21.88 Mb in size. [6]

The most closely related ascomycetes to Baudoinia spp. appear to be members of the genera Friedmanniomyces and Trimmatostroma. Friedmanniomyces species are rock-inhabiting species known only from the Antarctic. [1] This fits in well with the observed fact that the species favours surfaces that are subjected to great environmental exposure, as in roofing materials that experience extreme diurnal fluctuations in ambient conditions. [1]

Notes

  1. Bark: UAMH 10762, UAMH 10808, UAMH 10811, UAMH 10815 [4]
  2. Concrete: UAMH 10764 [4]
  3. PVC plastic: UAMH 11557, UAMH 10810 [4]
  4. Galvanized roofing: UAMH 11556 [4]
  5. Masonry: UAMH 11553, UAMH 11554, UAMH 10812 [4]
  6. Stone: UAMH 10763, UAMH 10813 [4]

Related Research Articles

<span class="mw-page-title-main">Pot still</span> Distillation apparatus for flavored liquors

A pot still is a type of distillation apparatus or still used to distill liquors such as whisky or brandy. In modern (post-1850s) practice, they are not used to produce rectified spirit, because they do not separate congeners from ethanol as effectively as other distillation methods. Pot stills operate on a batch distillation basis. Traditionally constructed from copper, pot stills are made in a range of shapes and sizes depending on the quantity and style of spirit desired.

<span class="mw-page-title-main">Barrel</span> Hollow cylindrical container

A barrel or cask is a hollow cylindrical container with a bulging center, longer than it is wide. They are traditionally made of wooden staves and bound by wooden or metal hoops. The word vat is often used for large containers for liquids, usually alcoholic beverages; a small barrel or cask is known as a keg.

<span class="mw-page-title-main">Heaven Hill</span> American distillery company

Heaven Hill Distilleries, Inc. is a private, American family-owned and operated distillery founded in 1935 and headquartered in Bardstown, Kentucky, that produces and markets the Heaven Hill brand of Kentucky Straight Bourbon Whiskey and a variety of other distilled spirits.

<span class="mw-page-title-main">Conidium</span> Asexual, non-motile spore of a fungus

A conidium, sometimes termed an asexual chlamydospore or chlamydoconidium, is an asexual, non-motile spore of a fungus. The word conidium comes from the Ancient Greek word for dust, κόνις (kónis). They are also called mitospores due to the way they are generated through the cellular process of mitosis. They are produced exogenously. The two new haploid cells are genetically identical to the haploid parent, and can develop into new organisms if conditions are favorable, and serve in biological dispersal.

<span class="mw-page-title-main">Sclerotium</span> Mycelial mass

A sclerotium, is a compact mass of hardened fungal mycelium containing food reserves. One role of sclerotia is to survive environmental extremes. In some higher fungi such as ergot, sclerotia become detached and remain dormant until favorable growth conditions return. Sclerotia initially were mistaken for individual organisms and described as separate species until Louis René Tulasne proved in 1853 that sclerotia are only a stage in the life cycle of some fungi. Further investigation showed that this stage appears in many fungi belonging to many diverse groups. Sclerotia are important in the understanding of the life cycle and reproduction of fungi, as a food source, as medicine, and in agricultural blight management.

<i>Geotrichum candidum</i> Species of fungus

Geotrichum candidum is a fungus which is a member of the human microbiome, notably associated with skin, sputum, and faeces where it occurs in 25–30% of specimens. It is common in soil and has been isolated from soil collected around the world, in all continents.

<i>Colletotrichum lindemuthianum</i> Species of fungus

Colletotrichum lindemuthianum is a fungus which causes anthracnose, or black spot disease, of the common bean plant. It is considered a hemibiotrophic pathogen because it spends part of its infection cycle as a biotroph, living off of the host but not harming it, and the other part as a necrotroph, killing and obtaining nutrients from the host tissues.

<i>Dendrocollybia</i> Genus of fungi in the family Tricholomataceae

Dendrocollybia is a fungal genus in the family Tricholomataceae of the order Agaricales. It is a monotypic genus, containing the single species Dendrocollybia racemosa, commonly known as the branched collybia or the branched shanklet. The somewhat rare species is found in the Northern Hemisphere, including the Pacific Northwest region of western North America, and Europe, where it is included in several Regional Red Lists. It usually grows on the decaying fruit bodies of other agarics—such as Lactarius and Russula—although the host mushrooms may be decayed to the point of being difficult to recognize.

<i>Chlamydosauromyces</i> Genus of fungi

Chlamydosauromyces punctatus is the sole species in the monotypic genus of fungi, Chlamydosauromyces in the family, Onygenaceae. It was found in the skin shed from frilled lizard. This fungus is mesophilic and digests hair. It reproduces both sexually and asexually. The fungus has so far not been reported to be pathogenic.

<span class="mw-page-title-main">Willett Distillery</span>

Willett Distillery Ltd, is a private, family-owned-and-operated company that produces bourbon and rye whiskey. Over the years, the company has bottled whiskeys that range from two years of aging maturity up to 28 years. The company was named Kentucky Bourbon Distillers (KBD) between 1984 and 2012.

Mycetophagites is an extinct fungal genus of mycoparasitic in the order Hypocreales. A monotypic genus, it contains the single species Mycetophagites atrebora.

<i>Baudoinia</i> Genus of fungi

Baudoinia is a fungal genus in the family Teratosphaeriaceae. It was created to hold the single species Baudoinia compniacensis, which was formerly known as Torula compniacensis. Four additional species were added to the genus in 2015. The genus was named in honor of the 19th-century French pharmacist Antonin Baudoin, who first recorded the description of a black, sooty mold that grew near distilleries in Cognac, France. The story of the rediscovery and renaming of this genus was told in an article in the magazine Wired in 2011.

<span class="mw-page-title-main">Jefferson's Bourbon</span> Brand of Bourbon Whiskey

Jefferson's Bourbon is a Louisville, Kentucky–based brand of bourbon whiskey which is distilled, blended by Kentucky Artisan Distillery (KAD) and distributed by the Castle Brands. The brand was first released in 1997.

<i>Zasmidium cellare</i> Species of fungus

Zasmidium cellare, also known as cellar mold, is a species of fungus that exists in dark, ethanol-rich environments and is brown to black in colour. This species primarily exists in wine and brandy cellars in central and southern Europe, but can be found in surrounding regions and is thought to be helpful in the wine making process by some and a hygienic issue by others. Not much is known about Z. cellare's sexual biology and is thought to be beneficial to the cleanliness of cellar air due to its ability to consume musty odours.

Amauroascus kuehnii is a fungus in the phylum Ascomycota, class Eurotiomycetes. It is keratinophilic but not known to cause any human disease. It has been isolated from animal dungs, soil, and keratinous surfaces of live or deceased animals.

Curvularia pallescens is a soil fungus, that commonly grows on crops found in tropical regions. The conidia of the fungus are distinguishable from those of related species due to their lack of curvature. C. pallescens has been reported to cause infection in plants, and in immunocompetent individuals. This species is the anamorph of Cochliobolus pallescens.

<i>Mariannaea elegans</i> Species of fungus

Mariannaea elegans an anamorphic fungus. It is mainly found on rotting wood and soil. M. elegans is not pathogenic to humans, animals, or plants.

<i>Alternaria brassicicola</i> Species of fungus

Alternaria brassicicola is a fungal necrotrophic plant pathogen that causes black spot disease on a wide range of hosts, particularly in the genus of Brassica, including a number of economically important crops such as cabbage, Chinese cabbage, cauliflower, oilseeds, broccoli and canola. Although mainly known as a significant plant pathogen, it also contributes to various respiratory allergic conditions such as asthma and rhinoconjunctivitis. Despite the presence of mating genes, no sexual reproductive stage has been reported for this fungus. In terms of geography, it is most likely to be found in tropical and sub-tropical regions, but also in places with high rain and humidity such as Poland. It has also been found in Taiwan and Israel. Its main mode of propagation is vegetative. The resulting conidia reside in the soil, air and water. These spores are extremely resilient and can overwinter on crop debris and overwintering herbaceous plants.

Botryotrichum piluliferum is a fungal species first identified in 1885 by Saccardo and Marchal. It was discovered to be the asexual state of a member of the ascomycete genus, Chaetomium. The name B. piluliferum now applies to the fungus in all its states. B. piluliferum has been found worldwide in a wide range of habitats such as animal dung and vegetation. The colonies of this fungus start off white and grow rapidly to a brown colour. The conidia are smooth and white. B. piluliferum grows optimally at a temperature of 25-30 °C and a pH of 5.5.

Curvularia geniculata is a fast-growing anamorphic fungus in the division Ascomycota, most commonly found in soil, especially in areas of warmer climates. The fungus is a pathogen, mainly causing plant and animal infections, and rarely causing human infections. C. geniculata is characterized by its curved conidia, which has a dark brown centre and pale tapered tips, and produces anti-fungal compounds called Curvularides A-E.

References

  1. 1 2 3 4 5 6 7 8 Scott, J. A.; Untereiner, W. A.; Ewaze, J. O.; Wong, B.; Doyle, D. (July 1, 2007). "Baudoinia, a new genus to accommodate Torula compniacensis". Mycologia. 99 (4): 592–601. doi:10.3852/mycologia.99.4.592. PMID   18065010. Archived from the original on September 30, 2015. Retrieved November 14, 2016.
  2. 1 2 Byland, Hannah (September 4, 2012). "Whiskey Aging Warehouses and the Effects to Surrounding Residential Neighborhoods in Louisville, Ky" (PDF). Louisville, Kentucky: Louisville, Kentucky government. Archived from the original (PDF) on February 25, 2014. Retrieved July 30, 2014.
  3. 1 2 Scott, James. "Baudoinia compniacensis". University of Toronto, Dalla Lana School of Public Health. Archived from the original on November 2, 2016. Retrieved November 14, 2016.
  4. 1 2 3 4 5 6 7 Sigler, L. "UAMH Culture Collection Catalogue". UAMH Centre for Global Microfungal Biodiversity. University of Toronto. Archived from the original on 2022-02-04. Retrieved 2022-10-06.
  5. 1 2 Levenson, Michael (March 1, 2023). "Whiskey Fungus Fed by Jack Daniel's Encrusts a Tennessee Town". The New York Times. Retrieved March 2, 2023.
  6. Ohm, RA; Feau, N; Henrissat, B; Schoch, CL; Horwitz, BA; Barry, KW; Condon, BJ; Copeland, AC; Dhillon, B; Glaser, F; Hesse, CN; Kosti, I; LaButti, K; Lindquist, EA; Lucas, S; Salamov, AA; Bradshaw, RE; Ciuffetti, L; Hamelin, RC; Kema, GH; Lawrence, C; Scott, JA; Spatafora, JW; Turgeon, BG; de Wit, PJ; Zhong, S; Goodwin, SB; Grigoriev, IV (2012). "Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi". PLOS Pathogens. 8 (12): e1003037. doi: 10.1371/journal.ppat.1003037 . PMC   3516569 . PMID   23236275.