Bioenergy in China

Last updated

China has set the goal of attaining one percent of its renewable energy generation through bioenergy in 2020.

Contents

The development of bioenergy in China is needed to meet the rising energy demand.[ according to whom? ]

Several institutions are involved in this development, most notably the Asian Development Bank and China's Ministry of Agriculture. There is also an added incentive to develop the bioenergy sector which is to increase the development of the rural agricultural sector.

As of 2005, bioenergy use has reached more than 20 million households in the rural areas, with methane gas as the main biofuel. Also more than 4000 bioenergy facilities produce 8 billion cubic metres every year of methane gas. By 2006 20% of "gasoline" consumed was actually a 10% ethanol-gasoline blend. ( People's Daily Online ) As of 2010, electricity generation by bioenergy is expected to reach 5 GW, and 30 GW by 2020. The annual use of methane gas is expected to be 19 cubic kilometers by 2010, and 40 cubic kilometers by 2020.

As of at least 2023, China is both the world's largest producer and largest consumer of household biogas. [1] :172 As of 2023, more than 30 million rural Chinese households use biogas digesters. [1] :172

Events

Developments

Policy

Targets

Issues

Biofuel production

Bioenergy potential

Organizations

Regional organizations

Government organizations

China's circulars on bioenergy policy have been co-released by the following agencies:

Government websites (English)

Non-governmental organizations (NGOs)

Companies

(source: Climate Change China Info-Net (.gov site))

Publicly traded companies

At least two publicly traded companies, China Clean Energy, Inc. and Gushan, manufacture and sell significant amounts of biodiesel in China.

Publications

Other

See also

Related Research Articles

<span class="mw-page-title-main">Biofuel</span> Type of biological fuel

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and possible deforestation and biodiversity loss as a result of biofuel production.

<span class="mw-page-title-main">Biodiesel</span> Fuel made from vegetable oils or animal fats

Biodiesel is a renewable biofuel, a form of diesel fuel, derived from biological sources like vegetable oils, animal fats, or recycled greases, and consisting of long-chain fatty acid esters. It is typically made from fats.

<span class="mw-page-title-main">Biorefinery</span> Refinery that converts biomass to energy and other beneficial byproducts

A biorefinery is a refinery that converts biomass to energy and other beneficial byproducts. The International Energy Agency Bioenergy Task 42 defined biorefining as "the sustainable processing of biomass into a spectrum of bio-based products and bioenergy ". As refineries, biorefineries can provide multiple chemicals by fractioning an initial raw material (biomass) into multiple intermediates that can be further converted into value-added products. Each refining phase is also referred to as a "cascading phase". The use of biomass as feedstock can provide a benefit by reducing the impacts on the environment, as lower pollutants emissions and reduction in the emissions of hazard products. In addition, biorefineries are intended to achieve the following goals:

  1. Supply the current fuels and chemical building blocks
  2. Supply new building blocks for the production of novel materials with disruptive characteristics
  3. Creation of new jobs, including rural areas
  4. Valorization of waste
  5. Achieve the ultimate goal of reducing GHG emissions
<span class="mw-page-title-main">Bioenergy</span> Renewable energy made from biomass

Bioenergy is a type of renewable energy that is derived from plants and animal waste. The biomass that is used as input materials consists of recently living organisms, mainly plants. Thus, fossil fuels are not regarded as biomass under this definition. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.

<span class="mw-page-title-main">Biodiesel by region</span>

This article describes the use and availability of biodiesel in various countries around the world.

<span class="mw-page-title-main">Jatropha biodiesel in India</span>

Biofuel development in India centres mainly around the cultivation and processing of Jatropha plant seeds, which are very rich in oil, ranging from 27 to 40%, and averaging 34.4%. The drivers for this are historic, functional, economic, environmental, moral and political.

<span class="mw-page-title-main">Energy crop</span> Crops grown solely for energy production by combustion

Energy crops are low-cost and low-maintenance crops grown solely for renewable bioenergy production. The crops are processed into solid, liquid or gaseous fuels, such as pellets, bioethanol or biogas. The fuels are burned to generate electrical power or heat.

The United States produces mainly biodiesel and ethanol fuel, which uses corn as the main feedstock. The US is the world's largest producer of ethanol, having produced nearly 16 billion gallons in 2017 alone. The United States, together with Brazil accounted for 85 percent of all ethanol production, with total world production of 27.05 billion gallons. Biodiesel is commercially available in most oilseed-producing states. As of 2005, it was somewhat more expensive than fossil diesel, though it is still commonly produced in relatively small quantities, in comparison to petroleum products and ethanol fuel.

Biofuel is fuel that is produced from organic matter (biomass), including plant materials and animal waste. It is considered a renewable source of energy that can assist in reducing carbon emissions. The two main types of biofuel currently being produced in Australia are biodiesel and bioethanol, used as replacements for diesel and petrol (gasoline) respectively. As of 2017 Australia is a relatively small producer of biofuels, accounting for 0.2% of world bioethanol production and 0.1% of world biodiesel production.

On April 25, 2006, Executive Order S-06-06, the Bioenergy Action Plan was issued by the then governor of California, Arnold Schwarzenegger, outlining a set of target goals which would establish the increasing use and production of biofuels and biopower for both electricity generation and substitution of natural gas and petroleum within the state of California. The plan asked multiple state agencies to work towards the advancement of biomass programs in California. The order would also help provide statewide environmental protection, mitigation and economic advancement. The plan was passed on July 7, 2006, with progress reports issued in 2007 and 2009.

<span class="mw-page-title-main">Biofuel in Sweden</span> Use of renewable fuels from living organisms in Sweden

Biofuels are renewable fuels that are produced by living organisms (biomass). Biofuels can be solid, gaseous or liquid, which comes in two forms: ethanol and biodiesel and often replace fossil fuels. Many countries now use biofuels as energy sources, including Sweden. Sweden has one of the highest usages of biofuel in all of Europe, at 32%, primarily due to the widespread commitment to E85, bioheating and bioelectricity.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy-rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

<span class="mw-page-title-main">Food vs. fuel</span> Debate concerning diversion of food supply for biofuels production

Food versus fuel is the dilemma regarding the risk of diverting farmland or crops for biofuels production to the detriment of the food supply. The biofuel and food price debate involves wide-ranging views and is a long-standing, controversial one in the literature. There is disagreement about the significance of the issue, what is causing it, and what can or should be done to remedy the situation. This complexity and uncertainty are due to the large number of impacts and feedback loops that can positively or negatively affect the price system. Moreover, the relative strengths of these positive and negative impacts vary in the short and long terms, and involve delayed effects. The academic side of the debate is also blurred by the use of different economic models and competing forms of statistical analysis.

<span class="mw-page-title-main">Sustainable biofuel</span> Non-fossil-based sustainable production

Sustainable biofuel is biofuel produced in a sustainable manner. It is not based on petroleum or other fossil fuels. It includes not using plants that are used for food stuff to produce the fuel thus disrupting the world's food supply.

Issues relating to biofuel are social, economic, environmental and technical problems that may arise from biofuel production and use. Social and economic issues include the "food vs fuel" debate and the need to develop responsible policies and economic instruments to ensure sustainable biofuel production. Farming for biofuels feedstock can be detrimental to the environment if not done sustainably. Environmental concerns include deforestation, biodiversity loss and soil erosion as a result of land clearing for biofuels agriculture. While biofuels can contribute to reduction in global carbon emissions, indirect land use change for biofuel production can have the inverse effect. Technical issues include possible modifications necessary to run the engine on biofuel, as well as energy balance and efficiency.

<span class="mw-page-title-main">Biofuels by region</span> Use of biofuel as energy source across the world

The use of biofuels varies by region. The world leaders in biofuel development and use are Brazil, United States, France, Sweden and Germany.

United States policy in regard to biofuels, such as ethanol fuel and biodiesel, began in the early 1990s as the government began looking more intensely at biofuels as a way to reduce dependence on foreign oil and increase the nation's overall sustainability. Since then, biofuel policies have been refined, focused on getting the most efficient fuels commercially available, creating fuels that can compete with petroleum-based fuels, and ensuring that the agricultural industry can support and sustain the use of biofuels.

Bioenergy forms a small part of the Turkish energy sector. There is unrealised potential to generate bioenergy using waste from the country's vast agricultural sector and forest resources. The possibility of expanding biogas, biofuel and bioethanol production and use has been suggested to supplement Turkey's energy needs, reduce dependency on fossil fuel imports and cut greenhouse gas emissions.

References

  1. 1 2 Santos, Gonçalo (2021). Chinese Village Life Today: Building Families in an Age of Transition. Seattle: University of Washington Press. ISBN   978-0-295-74738-5.
  2. "CNPC". Archived from the original on 2008-05-17. Retrieved 2007-11-03.