Bioremediation of oil spills

Last updated

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. [1] While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. [2] [3] The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. [4] Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation. [5]

Contents

Oil spills

Petroleum contamination of both terrestrial and marine environments results from prospection, extraction, refinement, transport, and storage of oil. Oil spills have been a global issue since the emergence of the oil industry in the early 1900s. The risk of unintentional and intentional spillage has increased as the energy industry and global demand expand. [6] Petroleum is a toxic mixture of organic compounds, trace amounts of heavy metals, and hydrocarbons including many persistent volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). [7]   Discharged into marine environments oil is particularly damaging due to rapid dispersal and the creation of secondary pollutants through photolysis. [8] Petroleum bioaccumulation in terrestrial and marine food chains cause both acute and long term health effects. Exposure to oil damages critical functions within organisms including reproduction, regulation of physiological and chemical processes, and organ function. [9] Large spills alter ecosystem dynamics leading to algae blooms and a mass die-off of marine life. [10] It is estimated that over 1000 sea otters, along with many birds, died from the Exxon Valdez spill. [11] Oil spill clean up efforts commonly employ multiple methods in tandem. Controlled burning and barriers were both used as manual remediation efforts following the Exxon Valdez incident. [12] Chemical solvents and dispersants were briefly used by Exxon in water surrounding the Valdez although discontinued as they required specific conditions and contained carcinogenic compounds. [12] Bioremediation techniques used in the Exxon Valdez spill included nitrogen and phosphorus seeding along coastline increasing available nutrients for indigenous petroleum degrading microorganisms doubling rates of decomposition. [13] Across all remediation techniques less than ten percent of the oil released from Exxon Valdez tanker was recovered. [12] Many genera of plant, microbes, and fungi have demonstrated oil remediating properties including Spartina, Haloscarcia, Rhizophora, Nocardioides, Dietzia, and Microbacterium. [14] [15] [16] [17]

Bioremediation

Bioremediation refers to the use of specific microorganisms or plants to metabolize and remove harmful substances. These organisms are known for their biochemical and physical affinity to hydrocarbons among other pollutants. Various types of bacteria, archaea, algae, fungi, and some species of plants are all able to break down specific toxic waste products into safer constituents. Bioremediation is classified by the organism responsible for remediation with three major subdivisions: microbial remediation, phytoremediation, and mycoremediation. [18] In most cases, bioremediation works to either increase the numbers of naturally occurring microorganisms or add pollutant-specific microbes to the area. Bioremediation can involve using many varieties of microorganisms as well, either synergistically or independently of each other. The costs and environmental impacts of bioremediation are often negligible when compared to traditional manual or chemical remediation efforts.[ citation needed ]

Bioremediation of petroleum

Due to their ubiquity across environments, many organisms have evolved to use the hydrocarbons and organic compounds in petroleum as energy while simultaneously denaturing toxins through molecular transfer mechanisms. [19]

Microbial bioremediation uses aerobic and anaerobic properties of various microbes to respire and ferment compounds transforming toxins into innocuous compounds. [19] These resulting compounds exhibit more neutral pH levels, increased solubility in water, and are less reactive molecularly. Baseline populations of oil-degrading microorganisms typically account for less than 1% of microbiomes associated with marine ecosystems. Remediation techniques which remove reaction limiting factors through the addition of substrate, can boots microbe population towards 10% of the ecosystems microbiome. [20] Dependent on physical and chemical properties, petroleum-degenerative microorganisms take longer to degrade compounds with high-molecular-weight, such as polycyclic aromatic hydrocarbons (PAH's). These microbes require a wide array of enzymes for the breakdown of petroleum, and very specific nutrient compositions to work at an efficient rate. [21]

Microbes work in a step-wise fashion to breakdown and metabolize the components of petroleum. [21]

  1. Linear Alkanes
  2. Branched Alkanes
  3. Small aromatic compounds
  4. Cyclic Alkanes

Treatments that use these breakdown processes most commonly use heat and chemicals to extend the efficacy. [22] Later, more biological systems are used for specific ecosystems that use specific mechanisms. [22]

Phytoremediation is a process in which plants are used to sequester toxins and hydrocarbons into plant tissue from contaminated soils. The main mechanisms for phytoremediation stem from complex relationships between roots and rhizobia. Plants secrete sugars, enzymes, and oxygen from roots which provide necessary substrates for rhizobia and associated rhizosphere microbes to stimulate degradation of organic pollutants. [23] Studies have demonstrated the bioaccumulation abilities of various plants with rhizobial associations, in particular Chromolaena odorata were able to remove 80% of petroleum and heavy metal toxins from soils. [24] While more commonly used on terrestrial environments, contaminated marine environments also benefit from plants based bioremediation through the use of various algae and macrophytes.[ citation needed ] Phytoremediation is most effective when used in conjunction with microbial remediation and Mycoremediation. [25] [26]

Mycoremediation techniques make use of pollutant tolerant fungi which sequester or denature environmental toxins particularly heavy metals. Toxins are sequestered into highly absorbent molecules such chitin and glucan which are found in fungal cell walls. [18] Saccharomyces cerevisiae (baker's yeast) can be used to remediate heavy metal contaminated marine ecosystems, with 80% to 90% success in the case of arsenic. [27] Polycyclic aromatic hydrocarbons (PAH) concentrations of soil samples taken from contaminated oil drilling cuttings in Nigeria have been decreased by 7% to 19% using white rot fungi under experimental conditions. [28] Soil contaminated with crude oil displays toxic levels of various heavy metals such as lead, zinc and magnesium. Application of mycoremediation techniques to crude contaminated soils have shown significant reductions of heavy metal concentrations. [29]

Mechanisms involved in bioremediation of toxic compounds. Biodegradation of Pollutants.png
Mechanisms involved in bioremediation of toxic compounds.

Bioremediation parameters

The efficiency and efficacy of each method of remediation has limitations. The goal of remediation is to eliminate the environmental pollutant as quickly as possible; only inefficient processes require human intervention. [30] Environmental factors such as requirements of reaction, mobility of substances, and physiological needs of organisms will affect the rate and degree that contaminants are degraded. [31] Over time, many of these requirements are overcome. This is when petroleum degrading bacteria and archaea are able to mediate oil spills most efficiently. Weathering and environmental factors play large roles in the success of bioremediation. Interacting soil and pollutant chemicals truly account for the work that can be completed by these microorganisms. These processes change the soil composition and layering, along with the biochemistry of the ecosystem. These chemical and biological changes require adaptation from soil microbes to bioremediate. [30] The susceptibility of the pollutant is also important to consider. Properties such as solubility, temperature, and pH will affect bioremediation and affect the process. [32] Pollutants that are more soluble will be easier for microbes to transform into the environment. Otherwise, pollutants with rigid molecular structures extend bioremediation as they are harder to convert into innocuous substances. Bioaccessibility, the amount of pollutant available for absorption, and bioavailability of pollutant will affect efficiency as well. [32] In many instances, needed nutrients are collected and allocated for petroleum degrading microorganisms in order to maximize the efficiency of the process. [30] Providing microorganisms with the nutrients and conditions they need allow them to thrive.

Factors that affect bioremediation

[30]

Bioremediation mechanisms

Microorganisms use many unique mechanisms to convert molecules and transfer electrons. [31]
Bioremediation TechniqueConversionProducts
Aerobic Respiration Petroleum substrate with molecular oxygenNitrogen Gas, Hydrogen Sulfide,

Methane, Metals, Carbon Dioxide, Water

Inorganic Electron DonationAmmonium, Nitrite, Iron, Manganese are oxidized.Nitrate, Nitrite, Iron, Manganese, Sulfate
Fermentation Toxic petroleum compounds of organic natureHarmless Compounds, Fermentation Products
DemobilizationIron, Sulfate, Mercury, Chromium, UraniumFerric Hydroxide, Sulfide, Pyrite, Reduced Chromium,

Uraninite

Reductive Dehalogenation Halogen compound with electron donorReduced contaminant

Listed above, the chemicals required and products formed in petroleum degradation are shown. These microbes will reduce, oxidize, ferment, and demobilize the constituents of oil spills over time, and create innocuous compounds. Bioremediation techniques [33] involve using these mechanisms to reduce pollutant amounts and are dependent on pollutant aspects:

Ex situ bioremediation

Ex situ remediation refers to reactions performed outside the natural habitat of these organisms.

In situ bioremediation

In situ remediation refers to reactions performed inside a reaction mixture.

See also

Related Research Articles

Geomicrobiology Intersection of microbiology and geology

Geomicrobiology is the scientific field at the intersection of geology and microbiology and is a major subfield of geobiology. It concerns the role of microbes on geological and geochemical processes and effects of minerals and metals to microbial growth, activity and survival. Such interactions occur in the geosphere, the atmosphere and the hydrosphere. Geomicrobiology studies microorganisms that are driving the Earth's biogeochemical cycles, mediating mineral precipitation and dissolution, and sorbing and concentrating metals. The applications include for example bioremediation, mining, climate change mitigation and public drinking water supplies.

Environmental remediation Removal of pollution from soil, groundwater etc.

Environmental remediation deals with the removal of pollution or contaminants from environmental media such as soil, groundwater, sediment, or surface water. Remedial action is generally subject to an array of regulatory requirements, and may also be based on assessments of human health and ecological risks where no legislative standards exist, or where standards are advisory.

Bioremediation Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc, in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physiochemical treatment methods which suffer serious drawbacks, bioremediation is sustainable, eco-friendly, cheap, and scalable. Most bioremediation is inadvertent, involving native organisms. Research on bioremediation is heavily focused on stimulating the process by inoculation of a polluted site with organisms or supplying nutrients to promote the growth. In principle, bioremediation could be used to reduce the impact of byproducts created from anthropogenic activities, such as industrialization and agricultural processes. Bioremediation could prove less expensive and more sustainable than other remediation alternatives.

Phytoremediation Decontamination technique using living plants

Phytoremediation technologies use living plants to clean up soil, air, and water contaminated with hazardous contaminants. It is defined as "the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless". The term is an amalgam of the Greek phyto (plant) and Latin remedium. Although attractive for its cost, phytoremediation has not been demonstrated to redress any significant environmental challenge to the extent that contaminated space has been reclaimed.

Biological augmentation is the addition of archaea or bacterial cultures required to speed up the rate of degradation of a contaminant. Organisms that originate from contaminated areas may already be able to break down waste, but perhaps inefficiently and slowly.

<i>Geobacter</i> Genus of anaerobic bacteria found in soil

Geobacter is a genus of bacteria. Geobacter species are anaerobic respiration bacterial species which have capabilities that make them useful in bioremediation. Geobacter was found to be the first organism with the ability to oxidize organic compounds and metals, including iron, radioactive metals, and petroleum compounds into environmentally benign carbon dioxide while using iron oxide or other available metals as electron acceptors. Geobacter species are also found to be able to respire upon a graphite electrode. They have been found in anaerobic conditions in soils and aquatic sediment.

Biostimulation involves the modification of the environment to stimulate existing bacteria capable of bioremediation. This can be done by addition of various forms of rate limiting nutrients and electron acceptors, such as phosphorus, nitrogen, oxygen, or carbon. Alternatively, remediation of halogenated contaminants in anaerobic environments may be stimulated by adding electron donors, thus allowing indigenous microorganisms to use the halogenated contaminants as electron acceptors. EPA Anaerobic Bioremediation Technologies Additives are usually added to the subsurface through injection wells, although injection well technology for biostimulation purposes is still emerging. Removal of the contaminated material is also an option, albeit an expensive one. Biostimulation can be enhanced by bioaugmentation. This process, overall, is referred to as bioremediation and is an EPA-approved method for reversing the presence of oil or gas spills. While biostimulation is usually associated with remediation of hydrocarbon or high production volume chemical spills, it is also potentially useful for treatment of less frequently encountered contaminant spills, such as pesticides, particularly herbicides.

Mycoremediation Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

Soil contamination Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting cleanups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modeling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

Richard Bartha is an American microbiologist. He is best known professionally for his seminal discoveries in the field of bacterial pollution control ("bioremediation").

In biology, syntrophy, synthrophy, or cross-feeding is the phenomenon of one species living off the metabolic products of another species. In this type of biological interaction, the growth of one partner depends on the nutrients, growth factors, or substrates provided by the other partner. Jan Dolfing describes syntrophy as "the critical interdependency between producer and consumer". This term for nutritional interdependence is often used in microbiology to describe this symbiotic relationship between bacterial species. Morris et al. have described the process as "obligately mutualistic metabolism".

Biomining Technique of extracting metals from ores using prokaryotes or fungi

Biomining is the technique of extracting metals from ores and other solid materials typically using prokaryotes, fungi or plants. These organisms secrete different organic compounds that chelate metals from the environment and bring it back to the cell where they are typically used to coordinate electrons. It was discovered in the mid 1900s that microorganisms use metals in the cell. Some microbes can use stable metals such as iron, copper, zinc, and gold as well as unstable atoms such as uranium and thorium. Companies can now grow large chemostats of microbes that are leaching metals from their media, these vats of culture can then be transformed into many marketable metal compounds. Biomining is an environmentally friendly technique compared to typical mining. Mining releases many pollutants while the only chemicals released from biomining is any metabolites or gasses that the bacteria secrete. The same concept can be used for bioremediation models. Bacteria can be inoculated into environments contaminated with metals, oils, or other toxic compounds. The bacteria can clean the environment by absorbing these toxic compounds to create energy in the cell. Microbes can achieve things at a chemical level that could never be done by humans. Bacteria can mine for metals, clean oil spills, purify gold, and use radioactive elements for energy.

Microbial biodegradation is the use of bioremediation and biotransformation methods to harness the naturally occurring ability of microbial xenobiotic metabolism to degrade, transform or accumulate environmental pollutants, including hydrocarbons, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), heterocyclic compounds, pharmaceutical substances, radionuclides and metals.

Phototrophic biofilm Microbial communities including microorganisms which use light as their energy source


Phototrophic biofilms are microbial communities generally comprising both phototrophic microorganisms, which use light as their energy source, and chemoheterotrophs. Thick laminated multilayered phototrophic biofilms are usually referred to as microbial mats or phototrophic mats. These organisms, which can be prokaryotic or eukaryotic organisms like bacteria, cyanobacteria, fungi, and microalgae, make up diverse microbial communities that are affixed in a mucous matrix, or film. These biofilms occur on contact surfaces in a range of terrestrial and aquatic environments. The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment. In addition to these natural roles, phototrophic biofilms have also been adapted for applications such as crop production and protection, bioremediation, and wastewater treatment.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

Petroleum microbiology is a branch of microbiology that deals with the study of microorganisms that can metabolize or alter crude or refined petroleum products. These microorganisms, also called hydrocarbonoclastic microorganisms, can degrade hydrocarbons and, include a wide distribution of bacteria, methanogenic archaea, and some fungi. Not all hydrocarbonoclasic microbes depend on hydrocarbons to survive, but instead may use petroleum products as alternative carbon and energy sources. Interest in this field is growing due to the increasing use of bioremediation of oil spills.

Polychorinated biphenyls, or PCBs, are a type of chemical that was widely used in the 1960s and 1970s, and which are a contamination source of soil and water. They are fairly stable and therefore persistent in the environment. Bioremediation of PCBs is the use of microorganisms to degrade PCBs from contaminated sites, relying on multiple microorganisms' co-metabolism. Anaerobic microorganisms dechlorinate PCBs first, and other microorganisms that are capable of doing BH pathway can break down the dechlorinated PCBs to usable intermediates like acyl-CoA or carbon dioxide. If no BH pathway-capable microorganisms are present, dechlorinated PCBs can be mineralized with help of fungi and plants. However, there are multiple limiting factors for this co-metabolism.

<i>In situ</i> bioremediation

Bioremediation is the process of decontaminating polluted sites through the usage of either endogenous or external microorganism. In situ is a term utilized within a variety of fields meaning "on site" and refers to the location of an event. Within the context of bioremediation, in situ indicates that the location of the bioremediation has occurred at the site of contamination without the translocation of the polluted materials. Bioremediation is used to neutralize pollutants including Hydrocarbons, chlorinated compounds, nitrates, toxic metals and other pollutants through a variety of chemical mechanisms. Microorganism used in the process of bioremediation can either be implanted or cultivated within the site through the application of fertilizers and other nutrients. Common polluted sites targeted by bioremediation are groundwater/aquifers and polluted soils. Aquatic ecosystems affected by oil spills have also shown improvement through the application of bioremediation. The most notable cases being the Deepwater Horizon oil spill in 2010 and the Exxon Valdez oil spill in 1989. Two variations of bioremediation exist defined by the location where the process occurs. Ex situ bioremediation occurs at a location separate from the contaminated site and involves the translocation of the contaminated material. In situ occurs within the site of contamination In situ bioremediation can further be categorized by the metabolism occurring, aerobic and anaerobic, and by the level of human involvement.

Synthetic microbial consortia

Synthetic microbial consortia are multi-population systems that can contain a diverse range of microbial species, and are adjustable to serve a variety of industrial, ecological, and tautological interests. For synthetic biology, consortia take the ability to engineer novel cell behaviors to a population level.

Hydrocarbonoclastic bacteria are a heterogeneous group of prokaryotes which can degrade and utilize hydrocarbon compounds as source of carbon and energy. Despite being present in most of environments around the world, several of these specialized bacteria live in the sea and have been isolated from polluted seawater.

References

  1. McGill, W.B. (1977-04-01). "Soil Restoration Following Oil Spills - A Review". Journal of Canadian Petroleum Technology. 16 (2). doi:10.2118/77-02-07. ISSN   0021-9487.
  2. Walls, W.D. (May 2010). "Petroleum refining industry in China". Energy Policy. 38 (5): 2110–2115. doi:10.1016/j.enpol.2009.06.002. ISSN   0301-4215.
  3. YANG, Si-Zhong; JIN, Hui-Jun; WEI, Zhi; HE, Rui-Xia; JI, Yan-Jun; LI, Xiu-Mei; YU, Shao-Peng (June 2009). "Bioremediation of Oil Spills in Cold Environments: A Review". Pedosphere. 19 (3): 371–381. doi:10.1016/s1002-0160(09)60128-4. ISSN   1002-0160.
  4. ( Council, National Research (1969-12-31). In Situ Bioremediation: When Does it Work?. doi:10.17226/2131. ISBN   9780309048965.
  5. Atlas, Ronald M.; Hazen, Terry C. (2011-08-15). "Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History". Environmental Science & Technology. 45 (16): 6709–6715. Bibcode:2011EnST...45.6709A. doi:10.1021/es2013227. ISSN   0013-936X. PMC   3155281 . PMID   21699212.
  6. Sabir, Syed (2015-09-02). "Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water". Critical Reviews in Environmental Science and Technology. 45 (17): 1916–1945. doi:10.1080/10643389.2014.1001143. ISSN   1064-3389. S2CID   93238171.
  7. Hooper, Craig H. (1982). The IXTOC I oil spill : the Federal scientific response /. Boulder, Colo.: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Marine Pollution Assessment. doi:10.5962/bhl.title.62199.
  8. Kingston, Paul F (June 2002). "Long-term Environmental Impact of Oil Spills". Spill Science & Technology Bulletin. 7 (1–2): 53–61. doi:10.1016/s1353-2561(02)00051-8. ISSN   1353-2561.
  9. Tabari, Khashayar; Tabari, Mahsa (November 2010). "Biodegradation of heavy crude oil: effects and some innovative clean-up biotechnologies". Journal of Biotechnology. 150: 285. doi:10.1016/j.jbiotec.2010.09.220. ISSN   0168-1656.
  10. Jernelöv, Arne (July 2010). "The Threats from Oil Spills: Now, Then, and in the Future". Ambio. 39 (5–6): 353–366. doi:10.1007/s13280-010-0085-5. ISSN   0044-7447. PMC   3357709 . PMID   21053719.
  11. Jernelöv, Arne (July 2010). "The Threats from Oil Spills: Now, Then, and in the Future". AMBIO. 39 (5–6): 353–366. doi:10.1007/s13280-010-0085-5. ISSN   0044-7447. PMC   3357709 . PMID   21053719.
  12. 1 2 3 (PDF). 2010-07-08 https://web.archive.org/web/20100708011214/http://response.restoration.noaa.gov/book_shelf/26_spilldb.pdf. Archived from the original (PDF) on 2010-07-08. Retrieved 2020-06-05.{{cite web}}: Missing or empty |title= (help)
  13. Pritchard, P.Hap (September 1991). "Bioremediation as a technology: Experiences with the Exxon Valdez oil spill". Journal of Hazardous Materials. 28 (1–2): 115–130. doi:10.1016/0304-3894(91)87011-p. ISSN   0304-3894.
  14. Ali, Nedaa; Dashti, Narjes; Khanafer, Majida; Al-Awadhi, Husain; Radwan, Samir (2020-01-24). "Bioremediation of soils saturated with spilled crude oil". Scientific Reports. 10 (1): 1116. Bibcode:2020NatSR..10.1116A. doi:10.1038/s41598-019-57224-x. ISSN   2045-2322. PMC   6981149 . PMID   31980664.
  15. Lee, Kenneth; Levy, Eric M. (March 1991). "Bioremediation: Waxy Crude Oils Stranded on Low-Energy Shorelines". International Oil Spill Conference Proceedings. 1991 (1): 541–547. doi:10.7901/2169-3358-1991-1-541. ISSN   2169-3366.
  16. Burns, K.A; Codi, S; Duke, N.C (January 2000). "Gladstone, Australia Field Studies: Weathering and Degradation of Hydrocarbons in Oiled Mangrove and Salt Marsh Sediments With and Without the Application of an Experimental Bioremediation Protocol". Marine Pollution Bulletin. 41 (7–12): 392–402. doi:10.1016/s0025-326x(00)00094-1. ISSN   0025-326X.
  17. Duke, Norman C; Burns, Kathryn A; Swannell, Richard P.J; Dalhaus, Otto; Rupp, Roland J (January 2000). "Dispersant Use and a Bioremediation Strategy as Alternate Means of Reducing Impacts of Large Oil Spills on Mangroves: The Gladstone Field Trials". Marine Pollution Bulletin. 41 (7–12): 403–412. doi:10.1016/s0025-326x(00)00133-8. ISSN   0025-326X.
  18. 1 2 Shukla, Anurakti; Srivastava, Sudhakar (2017), "Emerging Aspects of Bioremediation of Arsenic", Green Technologies and Environmental Sustainability, Springer International Publishing, pp. 395–407, doi:10.1007/978-3-319-50654-8_17, ISBN   978-3-319-50653-1
  19. 1 2 In Situ Bioremediation: When Does it Work?. Washington, D.C.: National Academies Press. 1993-01-01. doi:10.17226/2131. ISBN   978-0-309-04896-5.
  20. Brooijmans, Rob J. W.; Pastink, Margreet I.; Siezen, Roland J. (2009-11-01). "Hydrocarbon-degrading bacteria: the oil-spill clean-up crew". Microbial Biotechnology. 2 (6): 587–594. doi:10.1111/j.1751-7915.2009.00151.x. ISSN 1751-7915. PMC 3815313. PMID 21255292.
  21. 1 2 Das, Nilanjana; Chandran, Preethy (2010-09-13). "Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview". Biotechnology Research International. 2011: 941810. doi:10.4061/2011/941810. ISSN 2090-3138. PMC 3042690. PMID 21350672.
  22. 1 2 Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed; Zouari, Nabil (2017-01-24). "Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils". BioMed Research International. 2017: 8649350. doi:10.1155/2017/8649350. ISSN 2314-6133. PMC 5294359. PMID 28243605
  23. Gerhardt, Karen E.; Huang, Xiao-Dong; Glick, Bernard R.; Greenberg, Bruce M. (January 2009). "Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges". Plant Science. 176 (1): 20–30. doi:10.1016/j.plantsci.2008.09.014. ISSN   0168-9452.
  24. Atagana, Harrison Ifeanyichukwu (2010-06-05). "Bioremediation of Co-contamination of Crude Oil and Heavy Metals in Soil by Phytoremediation Using Chromolaena odorata (L) King & H.E. Robinson". Water, Air, & Soil Pollution. 215 (1–4): 261–271. doi:10.1007/s11270-010-0476-z. ISSN   0049-6979. S2CID   97503907.
  25. Vouillamoz, J.; Milke, M. W. (2001-01-01). "Effect of compost in phytoremediation of diesel-contaminated soils". Water Science and Technology. 43 (2): 291–295. doi:10.2166/wst.2001.0102. ISSN   0273-1223. PMID   11380193.
  26. Alarcón, Alejandro; Davies, Fred T.; Autenrieth, Robin L.; Zuberer, David A. (2008-07-08). "Arbuscular Mycorrhiza and Petroleum-Degrading Microorganisms Enhance Phytoremediation of Petroleum-Contaminated Soil". International Journal of Phytoremediation. 10 (4): 251–263. doi:10.1080/15226510802096002. ISSN   1522-6514. PMID   19260211. S2CID   17893898.
  27. Singh, Asha Lata; Sarma, P. N. (2010-05-13). "Removal of Arsenic(III) from Waste Water UsingLactobacillus acidophilus". Bioremediation Journal. 14 (2): 92–97. doi:10.1080/10889861003767050. ISSN   1088-9868. S2CID   95251365.
  28. Araka, Perez P.; Okparanma, Reuben N.; Ayotamuno, Josiah M. (October 2019). "Diagnostic screening of organic contaminant level in solidified/stabilized pre-treated oil-based drill cuttings". Heliyon. 5 (10): e02644. doi:10.1016/j.heliyon.2019.e02644. ISSN   2405-8440. PMC   6806413 . PMID   31692587.
  29. Maduekwe, C.; Nwachukwu, E. O.; Joel, O. F. (2016). "Comparative Study of Rena and Mycoremediation Techniques in Reduction of Heavy Metals in Crude Oil Impacted Soil". SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers. doi:10.2118/184348-ms.
  30. 1 2 3 4 Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed; Zouari, Nabil (2017-01-24). "Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils". BioMed Research International. 2017: 8649350. doi: 10.1155/2017/8649350 . ISSN   2314-6133. PMC   5294359 . PMID   28243605.
  31. 1 2 Council, National Research (1969-12-31). In Situ Bioremediation: When Does it Work?. doi:10.17226/2131. ISBN   9780309048965.
  32. 1 2 Gkorezis, Panagiotis; Daghio, Matteo; Franzetti, Andrea; Hamme, Van; D, Jonathan; Sillen, Wouter; Vangronsveld, Jaco (2016-01-01). "The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective". Frontiers in Microbiology. 7: 1836. doi: 10.3389/fmicb.2016.01836 . ISSN   1664-302X. PMC   5116465 . PMID   27917161.
  33. Azubuike, Christopher Chibueze; Chikere, Chioma Blaise; Okpokwasili, Gideon Chijioke (2016-11-01). "Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects". World Journal of Microbiology and Biotechnology. 32 (11): 180. doi:10.1007/s11274-016-2137-x. ISSN   0959-3993. PMC   5026719 . PMID   27638318.