Bordetella trematum

Last updated

Bordetella trematum
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Proteobacteria
Class: Betaproteobacteria
Order: Burkholderiales
Family: Alcaligenaceae
Genus: Bordetella
Species:
B. trematum
Binomial name
Bordetella trematum
Vandamme et al. 1996 [1]
Strains
  • LMG 13506T
  • LMG 14446
  • LMG 14447
  • LMG 14448
  • LMG 14523
  • LMG 14991
  • LMG 14992
  • LMG 14993
  • LMG 15543
  • LMG 16652

Bordetella trematum is a species of Gram-negative bacteria identified in 1996 by comparison of 10 strains of B. trematum against other well characterized Bordetella and Alcaligenes species. [2] The term trema refers to something pierced or penetrated, or to a gap. "Trematum" pertains to open things, and refers to the presence of bacteria in wounds and other exposed parts of the body. [2] Strain LMG 13506T is the reference strain for this species. [2]

Contents

Isolation

Bordetella species typically infect the respiratory tracts of humans, but B. trematum has never been isolated from a human or animal respiratory tract. It has been isolated from human ear infection and limb wounds. [2] Below is a list of known B. trematum strains, alternative strain designation, and the date and source where they were first isolated: [2]

StrainAlternative DesignationDateSource
LMG 13506T1779TUnknownChronic otitis media, human, Germany
LMG 14446CCUG 139021980Leg wound
LMG 14447CCUG 139051980Ankle wound
LMG 14448CCUG 31299AUnknownUnknown
LMG 14523CCUG 247271983Leg wound, United States
LMG 14991CCUG 13903A1980Leg wound
LMG 14992CCUG 13903B1980Leg wound
LMG 14993CCUG 139041980Arm wound
LMG 115543CCUG 149391983United States
LMG 16652DMMZ 1733Unknown31-year-old man, chronic otitis media, Switzerland

Characteristics

Bordetella trematum is a Gram-negative, capsulated, non-spore-forming, rod about 0.5 μm wide and 1.0-1.8 μm long, but rods as long as 2.4 μm have been observed. [2] It grows aerobically at temperatures ranging from 25-42 °C, with optimal temperature for growth ranging from 35-37 °C. Microaerobic growth may be observed at optimal temperatures. [2] It is motile via peritrichous flagella. [2] B. trematum is catalase positive. [2] It is unique in being oxidase negative, since all other species of Bordetella are oxidase positive. [3] [4]

Bordetella trematum may be cultured on horse blood agar, MacConkey agar, and Bordet–Gengou agar. When grown on Bordet–Gengou agar, which is the standard agar for Bordetella isolation, colonies are convex, pearly, smooth, almost transparent, and glistening, and are surrounded by a zone of hemolysis. When grown on blood agar, colonies are grayish cream to white, circular, and convex. [2]

Metabolism

Little is known about the metabolism of the species B. trematum since it is relatively newly discovered. Like all Bordetella species, B. trematum is a chemoorganotroph and requires nicotinamide, organic sulfur such as cysteine, and organic nitrogen such as amino acids for growth by respiratory metabolism. [2] Its metabolism is not saccharolytic, meaning it does not use any form sugar for energy. [2] Six of the ten known strains are able to reduce nitrate to nitrite. [2] It is indole negative and urease negative. [2]

Taxonomy

DNA-rRNA hybridization was used to place B. trematum LMG 13506T in the family Alcaligenaceae. [2] Amplified ribosomal DNA restriction analysis revealed a 94% similarity between the B. trematum reference strain and the Bordatella reference species, B. pertussis . [2] Later, additional evidence to determine placement at the genus level came from DNA-DNA hybridization of B. trematum strains LMG 13506 and LMG 14446 against reference strains of other Bordetella and Alcaligenes species. Results showed the species B. trematum to be most like members of the genus Bordetella. [2] SDS-PAGE analysis of whole-cell proteins allowed for development of a dendrogram displaying that Bordetella is not monophyletic . [2] DNA-rRNA hybridization and 16S rRNA sequence analysis shows a close relationship between Bordetella and Alcaligenes. [2] It is often difficult to differentiate between the two genera; in fact, some species across the genera are phenotypically identical. [2]

Bordetella trematum and B. holmesii are the only species that do not colonize the respiratory tract. B. pertussis and B. parapertussis are respiratory pathogens that cause pertussis. B. bronchiseptica and B. avium are respiratory pathogens of other animals. B. hinzii is not pathogenic and colonizes the respiratory tract of birds. B. holmesii has been isolated from human blood. [2] Members of the genus Alcaligenes colonize humans, but not the respiratory tract, and soil and water. [2]

Genomics

The B. trematum genome was sequenced in 2013, and is currently undergoing annotation. [5] The genome is estimated to possess 4,145 coding sequences with the majority of sequences coding for amino acids, amino acid derivatives, and carbohydrate pathways. About 184 genes are predicted to be involved in membrane transport. [5] It has a 64-65% GC content. [2] The total genome size is not currently known.

Pathogenicity

Bordetella trematum is a nonpathogenic, [4] opportunistic [3] organism whose sole source of isolation is open, human wounds. [2] It can be ridded from the body without medical intervention. [3]

Bordetella endotoxins are unique to the genus, species, and strain. B. trematum is the only Bordetella species with a semirough lipopolysaccharide which contains a single O-unit. The lipid A unit of B. trematum is identical to that of the opportunistic bacterium B. hinzii, but unlike any other Bordetella species. [6]

Related Research Articles

<i>Paramyxoviridae</i> Family of viruses

Paramyxoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Vertebrates serve as natural hosts. Diseases associated with this family include measles, mumps, and respiratory tract infections. The family has four subfamilies, 17 genera, and 78 species, three genera of which are unassigned to a subfamily.

<i>Bordetella bronchiseptica</i> Species of bacterium

Bordetella bronchiseptica is a small, gram-negative, rod-shaped bacterium of the genus Bordetella. It can cause infectious bronchitis in dogs and other animals, but rarely infects humans. Closely related to B. pertussis—the obligate human pathogen that causes pertussis ; B. bronchiseptica can persist in the environment for extended periods.

<i>Haemophilus influenzae</i> Species of bacterium

Haemophilus influenzae is a Gram-negative, coccobacillary, facultatively anaerobic capnophilic pathogenic bacterium of the family Pasteurellaceae. H. influenzae was first described in 1892 by Richard Pfeiffer during an influenza pandemic. He incorrectly described Haemophilus influenzae as the causative microbe, which retains "influenza" in its name.

<i>Bordetella</i> Genus of bacteria

Bordetella is a genus of small, gram-negative coccobacilli of the phylum Proteobacteria. Bordetella species, with the exception of B. petrii, are obligate aerobes, as well as highly fastidious, or difficult to culture. All species can infect humans. The first three species to be described ; are sometimes referred to as the 'classical species'. Two of these are also motile.

Pertussis toxin

Pertussis toxin (PT) is a protein-based AB5-type exotoxin produced by the bacterium Bordetella pertussis, which causes whooping cough. PT is involved in the colonization of the respiratory tract and the establishment of infection. Research suggests PT may have a therapeutic role in treating a number of common human ailments, including hypertension, viral infection, and autoimmunity.

<i>Bordetella pertussis</i> Species of bacterium causing pertussis or whooping cough

Bordetella pertussis is a Gram-negative, aerobic, pathogenic, encapsulated coccobacillus of the genus Bordetella, and the causative agent of pertussis or whooping cough. Like B. bronchiseptica, B. pertussis is motile and expresses a flagellum-like structure. Its virulence factors include pertussis toxin, adenylate cyclase toxin, filamentous hæmagglutinin, pertactin, fimbria, and tracheal cytotoxin.

<i>Pasteurella multocida</i> Species of bacterium

Pasteurella multocida is a Gram-negative, nonmotile, penicillin-sensitive coccobacillus of the family Pasteurellaceae. Strains of the species are currently classified into five serogroups based on capsular composition and 16 somatic serovars (1–16). P. multocida is the cause of a range of diseases in mammals and birds, including fowl cholera in poultry, atrophic rhinitis in pigs, and bovine hemorrhagic septicemia in cattle and buffalo. It can also cause a zoonotic infection in humans, which typically is a result of bites or scratches from domestic pets. Many mammals and birds harbor it as part of their normal respiratory microbiota.

<i>Bordetella parapertussis</i> Species of bacterium

Bordetella parapertussis is a small Gram-negative bacterium of the genus Bordetella that is adapted to colonise the mammalian respiratory tract. Pertussis caused by B. parapertussis manifests with similar symptoms to B. pertussis-derived disease, but in general tends to be less severe. Immunity derived from B. pertussis does not protect against infection by B. parapertussis, however, because the O-antigen is found only on B. parapertussis. This antigen protects B. parapertussis against antibodies specific to B. pertussis, so the bacteria are free to colonize the host's lungs without being subject to attack by previous antibodies. These findings suggest B. parapertussis evolved in a host population that had already developed immunity to B. pertussis, where being able to evade B. pertussis immunity was an advantage.

Mycobacterium elephantis, a bacterium of the family Mycobacteriaceae, was discovered and isolated from a deceased elephant near India and may be linked to respiratory dysfunction. Organisms in the genus Mycobacterium are known to be aerobic and non-motile. Organisms within Mycobacterium belong to either the rapid growing group or the slow growing group. M. elephantis is classified as a rapid grower and relates most closely to Mycobacterium confluentis and Mycobacterium phlei.

Streptococcus zooepidemicus is a Lancefield group C streptococcus that was first isolated in 1934 by P. R. Edwards, and named Animal pyogens A. It's a mucosal commensal and opportunistic pathogen that infects several animals and humans, but most commonly isolated from the uterus of mares. It's a subspecies of Streptococcus equi, a contagious upper respiratory tract infection of horses, and shares greater than 98% DNA homology, as well as many of the same virulence factors.

<i>Streptobacillus moniliformis</i> Species of bacterium

Streptobacillus moniliformis is a non-motile, Gram-negative rod-shaped bacterium that is a member of the family Leptotrichiaceae. The genome of S. moniliformis is one of two completed sequences of the order Fusobacteriales. Its name comes from the Greek word streptos for "curved" or "twisted", and the Latin words bacillus meaning "small rod" and moniliformis for "necklace". S. moniliformis is microaerophilic, requiring less oxygen than is present in the atmosphere for its growth.

Neisseria bacilliformis is a bacterium commonly found living as a commensal in the mucous membranes of mammals. However, depending on host immunocompetence, there have been documented cases of N. bacilliformis infections of the respiratory tract and oral cavity thus making it an opportunistic pathogen. It was originally isolated from patients being treated in a cancer center. Rarely, a more serious infection such as endocarditis can occur often as a result of a predisposing condition.

Bordetella holmesii is a Gram-negative, rod-shaped bacterium of the genus Bordetella. It was named in recognition of Barry Holmes, a biologist. It is asaccharolytic, oxidase-negative, and nonmotile, producing a brown pigment. It is associated with sepsis, endocarditis, and respiratory illness, especially in immunocompromised patients, such as asplenic or AIDS patients. It is often seen in conjunction with Bordetella pertussis infections, although not always.

<i>Achromobacter xylosoxidans</i> Species of bacterium

Achromobacter xylosoxidans is a Gram-negative, aerobic, oxidase and catalase-positive, motile bacterium with peritrichous flagella, from the genus Achromobacter. It is generally found in wet environments. Achromobacter xylosoxidans can cause infections such as bacteremia, especially in patients with cystic fibrosis. In 2013, the complete genome of an A. xylosoxidans strain from a patient with cystic fibrosis was sequenced.

Legionella cherrii is an aerobic, flagellated, Gram-negative bacterium from the genus Legionella. It was isolated from a heated water sample in Minnesota. L. cherrii is similar to another Legionella species, L. pneumophila, and is believed to cause major respiratory problems.

Legionella jordanis is a Gram-negative bacterium from the genus Legionella which was isolated from the Jordan River in Bloomington, Indiana and from the sewage in DeKalb County, Georgia. L. jordanis is a rare human pathogen and can cause respiratory tract infections.

Flavobacterium psychrophilum is a psychrophilic, gram-negative bacterial rod, belonging to the Bacteriodetes. It is the causative agent of bacterial coldwater disease (BCWD) and was first isolated in 1948 during a die-off in the salmonid Oncorhychus kisutch.

Crenobacter cavernea Cave-375 is a gram negative bacterium that is closely related to a previously discovered Crenobacter cavernae strain K1W11S-77ͭ. C. cavernea Cave-375 has not directly been described morphologically, however the related strain K1W11S-77ͭ is a "rod-shaped, motile, and strictly aerobic novel bacteria".

Rhodoplanes azumiensis is a thermotolerant Proteobacteria isolated from sediment mud and cyanobacterial mats located in Nakanoyu hot springs, located in the Azumi district, Matsumoto, Nagano Prefecture, Japan. R. azumiensis is a photoheterotroph that is capable of using many organic materials as its carbon source. Colonies and liquid cultures exhibit a brownish red color when grown phototrophically, and are colorless when grown aerobically in darkness.

<i>Arthrobacter bussei</i> Species of bacterium

Arthrobacter bussei is a pink-coloured, aerobic, coccus-shaped, Gram-stain-positive, oxidase-positive and catalase-positive bacterium isolated from cheese made of cow´s milk. A. bussei is non-motile and does not form spores. Rod–coccus life cycle is not observed. Cells are 1.1–1.5 µm in diameter. On trypticase soy agar it forms pink-coloured, raised and round colonies, which are 1.0 mm in diameter after 5 days at 30 °C The genome of the strain A. bussei KR32T has been fully sequenced.

References

  1. "Taxonomy Browser: Bordatella trematum". NCBI. Retrieved 7 April 2014.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Vandamme, P; M Heyndrickx; M Vancanneyt; B Hoste; P De Vos; E Falsen; K Kersters; K-H Hinz (October 1996). "Bordetella trematum sp. nov., Isolated from Wounds and Ear Infections in Humans, and Reassessment of Alcaligenes denitrificans Ruger and Tan 1983". International Journal of Systematic and Evolutionary Microbiology. 46 (4): 849–858. doi: 10.1099/00207713-46-4-849 . PMID   8863408.
  3. 1 2 3 Daxboeck, F; E Goerzer; P Apfalter; M Nehr; R Krause (November 2004). "Isolation of Bordetella trematum from diabetic leg ulcer". Diabetic Medicine. 21 (11): 1247–1248. doi:10.1111/j.1464-5491.2004.01310.x. PMID   15498093.
  4. 1 2 Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C . 2005. doi:10.1007/0-387-29298-5. ISBN   978-0-387-24145-6.
  5. 1 2 Shah, N R; M Moska; A Novikv; M B Perry; M Hirst; M Caroff; R C Fernandez (September–October 2013). "Draft Genome Sequences of Bordatella hinzii and Bordetella trematum". Genome Announcements. 1 (5): e00838–e00913. doi:10.1128/genomeA.00838-13. PMC   3813182 . PMID   24158552.
  6. Caroff, Martine; Laurent Aussel; Hassan Zarrouk; Adele Martin; James Richards; Helene Therisod; Malcolm Perry; Doris Karibian (February 2001). "Structure variability and originality of the Bordetella endotoxins". Innate Immunity. 7 (1): 63–68. doi:10.1177/09680519010070011101. PMID   11521085.