Cactodera cacti

Last updated

Cactodera cacti
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Nematoda
Class: Secernentea
Order: Tylenchida
Family: Heteroderidae
Genus: Cactodera
Species:
C. cacti
Binomial name
Cactodera cacti
(Filipjev & Schuurmans Stekhoven, 1941)

Cactodera cacti, also known as the cactus cyst nematode or cactus cyst eelworm, is a plant pathogenic nematode. It is a pest of plants in the families Cactaceae , Apiaceae , and Euphorbiaceae .

Contents

History

Cactodera cacti was first discovered in 1932 affecting various species of cactus. It gained wider attention after it appeared in Belle Glade, Florida in the 1960s when it was discovered to have infected the roots of celery plants in greenhouses. It was believed that the parasite had spread due to the popular demand of cactus plants in gardens allowing the nematodes to easily spread to the other plants in the greenhouses. [1] In 2012, there were reports of C. cacti emerging in various greenhouses across parts of Northern China. [2]

Distribution

In the United States the cactus cyst has been reported in Arkansas, California, Colorado, Florida, Georgia, Minnesota, and New York. It also ranges across parts of South America, Central America, Europe, and Asia. [1]

As C. cacti feeds off the roots of plants they mainly target plant species with either fine root systems, like cactus and succulents, or taproot plants that store large amounts of nutrients within their roots, like carrots, parsley, and celery.[ citation needed ]

Life cycle

Cactodera cacti reproduces sexually, although there is evidence that it is also able to reproduce asexually. [3] Females develop eggs within a tough protective cyst which is formed from the body of the female nematode via a process of polyphenol tanning. [4] Each cyst will contain hundreds of eggs and the cysts protect these eggs until they hatch. The eggs can survive without food or water for up to 30 years. The eggs hatch into juvenile nematodes. These juveniles will migrate to roots of a suitable host and remain in the roots of the plant. The nematode will feed from the root whilst they go through their remaining three juvenile stages before moulting into the adult form. Upon maturation the adult female will develop the eggs inside her before dying and forming the protective cyst.[ citation needed ]

Symptoms and signs

Plants that are infected with C. cacti often show signs of dying such as yellowing or dying leaves, wilting, stunted growth, and reduced flower production. Because the parasite attacks the roots of the plant it can also lead to root rot and allow for other parasites and various fungi to infest the plant as well. [5]

Prevention

The best method to treat nematode infested crops is the rotation of crops by season, as the nematode will not survive without a suitable host. For potted plants or greenhouses it is recommended the soil be changed out or that the roots of the plant be culled before being re-potted into clean soil. [5]

Impact

Cactodera cacti is not significantly important in regards of an economic loss but can prove problematic in greenhouses, nurseries, and home gardens. In Mexico where cactus plants are often used for food production C. cacti infestations can cause problems for local food production. [5]

Related Research Articles

Northern root-knot nematode is a species of vegetable pathogens which produces tiny galls on around 550 crop and weed species. They invade root tissue after birth. Females are able to lay up to 1,000 eggs at a time in a large egg mass. By surviving harsh winters, they can survive in cold climates.

<span class="mw-page-title-main">Root-knot nematode</span> Genus of parasitic worms

Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.

<i>Radopholus similis</i> Species of roundworm

Radopholus similis is a species of nematode known commonly as the burrowing nematode. It is a parasite of plants, and it is a pest of many agricultural crops. It is an especially important pest of bananas, and it can be found on coconut, avocado, coffee, sugarcane, other grasses, and ornamentals. It is a migratory endoparasite of roots, causing lesions that form cankers. Infected plants experience malnutrition.

<span class="mw-page-title-main">Soybean cyst nematode</span> Species of roundworm

The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pest to soybean crop yields in the U.S., targeting the roots of soybean and other legume plants. When infection is severe SCNs cause stunting, yellowing, impaired canopy development, and yield loss. The symptoms caused by SCNs can go easily unrecognized by farmers—in some cases there are no warning symptoms before a loss of 40% of the yield. Due to the slight stunting and yellowing, many farmers may mistake these symptoms as environmental problems when in fact they are SCNs. Another symptom of SCNs that may affect farmers' yields is stunted roots with fewer nitrogen-fixing nodules. Due to the fact that soybean cyst nematodes can only move a few centimeters in the soil by themselves, they mostly are spread via tillage or plant transplants. This area of infection will look patchy and nonuniform making diagnosis more difficult for farmers. They can be seen in the roots of summer soybean plants if the roots are taken out very carefully and gently washed with water. The egg masses should be seen as bright white or yellow "pearls" on the roots. The later the roots are pulled the harder it will be to diagnose due to the SCNs female dying and turning a much darker color, forming a "cyst". The best way to know if a field is infected by soybean cyst nematodes is to take a soil sample to a nematologist.

<span class="mw-page-title-main">Potato cyst nematode</span> Genus of roundworms that live on potato roots

Potato root nematodes or potato cyst nematodes (PCN) are 1-mm long roundworms belonging to the genus Globodera, which comprises around 12 species. They live on the roots of plants of the family Solanaceae, such as potatoes and tomatoes. PCN cause growth retardation and, at very high population densities, damage to the roots and early senescence of plants. The nematode is not indigenous to Europe but originates from the Andes. Fields are free from PCN until an introduction occurs, after which the typical patches, or hotspots, occur on the farmland. These patches can become full field infestations when unchecked. Yield reductions can average up to 60% at high population densities.

<i>Rotylenchulus reniformis</i> Species of roundworm

Rotylenchulus reniformis, the reniform nematode, is a species of parasitic nematode of plants with a worldwide distribution in the tropical and subtropical regions.

<i>Meloidogyne arenaria</i> Species of roundworm

Meloidogyne arenaria is a species of plant pathogenic nematodes. This nematode is also known as the peanut root knot nematode. The word "Meloidogyne" is derived from two Greek words that mean "apple-shaped" and "female". The peanut root knot nematode, M. arenaria is one of the "major" Meloidogyne species because of its worldwide economic importance. M. arenaria is a predominant nematode species in the United States attacking peanut in Alabama, Florida, Georgia, and Texas. The most damaging nematode species for peanut in the USA is M. arenaria race 1 and losses can exceed 50% in severely infested fields. Among the several Meloidogyne species that have been characterized, M. arenaria is the most variable both morphologically and cytologically. In 1949, two races of this nematode had been identified, race 1 which reproduces on peanut and race 2 which cannot do so. However, in a recent study, three races were described. López-Pérez et al (2011) had also studied populations of M. arenaria race 2, which reproduces on tomato plants carrying the Mi gene and race 3, which reproduces on both resistant pepper and tomato.

<i>Aphelenchoides ritzemabosi</i> Plant pathogenic nematode

Aphelenchoides ritzemabosi is a plant pathogenic nematode. It was first scientifically described in 1890 in England. This nematode has a wide host range. Among the most important species affected are Chrysanthemums and strawberries. A. ritzemabosi is a migratory foliar feeding nematode. It can feed both ectoparasitically and endoparasitically, with the later causing the most significant damage. When adequate moisture is present, this nematode enters the leaves and feeds from inside the tissue. Typical damage is characterized by necrotic zones between the veins of the leaves. Its lifecycle is short; only ten days from egg to mature adult. A single female can lay as many as 3,500 eggs. This pest can be difficult to control. Host plant resistance, hot water treatments, and predatory mites are recommended.

<i>Pratylenchus penetrans</i> Species of roundworm

Pratylenchus penetrans is a species of nematode in the genus Pratylenchus, the lesion nematodes. It occurs in temperate regions worldwide, regions between the subtropics and the polar circles. It is an animal that inhabits the roots of a wide variety of plants and results in necrotic lesions on the roots. Symptoms of P. penetrans make it hard to distinguish from other plant pathogens; only an assay of soil can conclusively diagnose a nematode problem in the field. P. penetrans is physically very similar to other nematode species, but is characterized by its highly distinctive mouthpiece. P. penetrans uses its highly modified mouth organs to rupture the outer surface of subterranean plant root structures. It will then enter into the root interior and feed on the plant tissue inside. P. penetrans is considered to be a crop parasite and farmers will often treat their soil with various pesticides in an attempt to eliminate the damage caused by an infestation. In doing this, farmers will also eliminate many of the beneficial soil fauna, which will lead to an overall degradation of soil quality in the future. Alternative, more environmentally sustainable methods to control P. penetrans populations may be possible in certain regions.

<i>Ditylenchus dipsaci</i> Species of flowering plant

Ditylenchus dipsaci is a plant pathogenic nematode that primarily infects onion and garlic. It is commonly known as the stem nematode, the stem and bulb eelworm, or onion bloat. Symptoms of infection include stunted growth, discoloration of bulbs, and swollen stems. D. dipsaci is a migratory endoparasite that has a five-stage lifecycle and the ability to enter into a dormancy stage. D. dipsaci enters through stomata or plant wounds and creates galls or malformations in plant growth. This allows for the entrance of secondary pathogens such as fungi and bacteria. Management of disease is maintained through seed sanitation, heat treatment, crop rotation, and fumigation of fields. D. dipsaci is economically detrimental because infected crops are unmarketable.

<i>Globodera pallida</i> Species of roundworm

Globodera pallida is a species of nematode in the family Heteroderidae. It is well known as a plant pathogen, especially of potatoes. It is "one of the most economically important plant parasitic nematodes," causing major crop losses, and is a model organism used to study the biology of cyst nematodes. Its common names include potato cyst nematode, white potato cyst nematode, pale potato cyst nematode, potato root eelworm, golden nematode, and pale cyst nematode.

<i>Heterodera avenae</i> Species of flowering plant

Heterodera avenae, the cereal cyst nematode or European cyst nematode, is a plant pathogen and an obligate parasite of cereal crops including barley, oats, wheat and rye. Cereal crops infected with this nematode are more susceptible to infection by fungal diseases such as rhizoctonia root rot.

Heterodera carotae is a plant pathogenic nematode commonly known as the carrot root nematode or carrot cyst nematode. It is found in Europe, Cyprus and India and is considered an invasive species in the United States. It causes damage to carrot crops and is very specific in its choice of hosts, only infecting Daucus carota and Daucus pulcherrima.

Heterodera humuli is a plant pathogenic nematode, the hop cyst nematode. It is an obligate parasite and infests hop plants, Humulus lupulus.

<i>Heterodera schachtii</i> Species of roundworm

Heterodera schachtii, the beet cyst eelworm or sugarbeet nematode, is a plant pathogenic nematode. It infects more than 200 different plants including economically important crops such as sugar beets, cabbage, broccoli, and radish. H. schachtii is found worldwide. Affected plants are marked by stunted growth, wilting, yellowing, decreased yields, and death. While there are many methods of control, crop rotation with non-susceptible plants is preferred.

<i>Paratylenchus hamatus</i> Species of roundworm

Paratylenchus hamatus, the fig pin nematode, is a species of migratory plant endoparasites, that causes lesions on plant roots resulting in symptoms of chlorosis, wilting and ultimately yield losses. They move and feed on different parts of host tissue throughout their life cycle in order to find enough susceptible host tissue to survive and reproduce. A wide range of host plant species are susceptible to the fig pin nematode, including many valuable fruit and vegetable crops such as figs, carrots and celery. They are also commonly found associated with woody perennials in California. P. hamatus inhabits soils in both Europe and North America, and was originally isolated from fig in central California in 1950.

Tylenchulus semipenetrans, also known as the citrus nematode or citrus root nematode, is a species of plant pathogenic nematodes and the causal agent of slow decline of citrus. T. semipenetrans is found in most citrus production areas and diverse soil textures worldwide. Their feeding strategy is semi-endoparasitic and has a very narrow host range among commonly grown crops. These nematodes are considered as major plant-parasitic nematode because they can cause 10-30% losses reported on citrus trees. They also parasitize other hosts such as olive, grape, persimmon and lilac. The citrus nematode was first discovered in California in 1913 by J. R. Hodges, a horticultural inspector for Los Angeles County, and was later described and named by Nathan Cobb that year. T. semipenetrans is the only species of Tylenchulidae that are economically important to agriculture.

Heterodera sacchari, the sugarcane cyst nematode, mitotic parthenogenic sedentary endoparasitic nematode. This plant-parasitic nematode infects the roots of sugarcane, and the female nematode eventually becomes a thick-walled cyst filled with eggs. Aboveground symptoms are species specific and are similar to those caused by other Heterodera species. Symptoms include: stunted and chlorotic plants, and reduced root growth. Seedlings may be killed in heavily infested soils.

Pratylenchus alleni is a migratory endoparasitic nematode, living inside of plant roots and feeding on parenchyma cells in the root cortex. P. alleni is an obligate biotroph, meaning it must have a living host in order to survive. Due to their incredibly broad host range, Pratylenchus species fall third in total economic impact, finishing just behind cyst nematodes and root knot nematodes (Meloidogyne). In Canada, it was isolated for the first time in 2011 in a soybean field.

Heterodera zeae, the corn cyst nematode (CCN), is a plant parasitic nematode that feeds on Zea mays (maize/corn). The CCN has a limited economic impact worldwide due to its high soil temperature requirements.

References

  1. 1 2 "Cactus Cyst Nematode, Cactodera cacti" (PDF). Freshfromflorida.com. Retrieved 17 March 2022.
  2. "First Report of the Cactus Cyst Nematode, Cactodera cacti, on Cactus in Northern China". Apsnet.org.
  3. Diogenes, Cordero (1991). "Fine structure of the posterior cone of females of Cactodera cacti Filip'ev & Schuurmans Stekhoven" (PDF). Revue de Nématologie. 14: 455–465.
  4. Sharma, S B (1998). Hatch and Emergence (In The Cyst Nematodes). Dordrecht, The Netherlands: Kluwer Academic Publishers. p. 191. ISBN   0-412-75530-0.
  5. 1 2 3 "Cactus cyst eelworm : Cactodera cacti". Plantwise.org. Retrieved 17 March 2022.