Center of mass (relativistic)

Last updated

In physics, relativistic center of mass refers to the mathematical and physical concepts that define the center of mass of a system of particles in relativistic mechanics and relativistic quantum mechanics.

Contents

Introduction

In non-relativistic physics there is a unique and well defined notion of the center of mass vector, a three-dimensional vector (abbreviated: "3-vector"), of an isolated system of massive particles inside the 3-spaces of inertial frames of Galilei spacetime. However, no such notion exists in special relativity inside the 3-spaces of the inertial frames of Minkowski spacetime.

In any rigidly rotating frame (including the special case of a Galilean inertial frame) with coordinates , the Newton center of mass of N particles of mass and 3-positions is the 3-vector

both for free and interacting particles.

In a special relativistic inertial frame in Minkowski spacetime with four vector coordinates a collective variable with all the properties of the Newton center of mass does not exist. The primary properties of the non-relativistic center of mass are

  1. together with the total momentum it forms a canonical pair,
  2. it transforms under rotations as a three vector, and
  3. it is a position associated with the spatial mass distribution of the constituents.

It is interesting that the following three proposals for a relativistic center of mass appearing in the literature of the last century [1] take on individually these three properties:

  1. The Newton–Wigner–Pryce center of spin or canonical center of mass, [2] [3] (it is the classical counterpart of the Newton–Wigner quantum position operator). It is a 3-vector satisfying the same canonical conditions as the Newton center of mass, namely having vanishing Poisson brackets in phase space. However, there is no 4-vector having it as the space part, so that it does not identify a worldline, but only a pseudo-worldline, depending on the chosen inertial frame.
  2. The Fokker–Pryce center of inertia . [4] It is the space part of a 4-vector , so that it identifies a worldline, but it is not canonical, i.e. .
  3. The Møller center of energy , [5] defined as the Newton center of mass with the rest masses of the particles replaced by their relativistic energies. This is not canonical, i.e. , neither the space part of a 4-vector; i.e. it only identifies a frame-dependent pseudo-worldline.

These three collective variables have all the same constant 3-velocity and all of them collapse into the Newton center of mass in the non-relativistic limit. In the 1970s there was a big debate on this problem, [6] [7] [8] [9] without any final conclusion.

Group theoretical definition

In non-relativistic mechanics the phase space expression of the ten generators of the Galilei group of an isolated system of N particles with 3-positions , 3-momenta and masses in the inertial frame with coordinates are ( is an inter-particle potential)

They are constants of the motion generating the transformations connecting the inertial frames. Therefore, at a group-theoretical definition of the Newton center of mass is

In special relativity the inertial frames are connected by transformations generated by the Poincaré group. The form of its ten generators for an isolated system of N particles with action-at-a-distance interactions is very complicated, depends on how the particles are parametrized in phase space and is known explicitly only for certain classes of interactions,. [10] [11] [12] However the ten quantities are constants of the motion and, when is a time-like 4-vector, one can define the two Casimir invariants of the given representation of the Poincaré group. [1] These two constants of motion identify the invariant mass and the rest spin of the isolated particle system. The relativistic energy–momentum relation is:

where is the zeroth component of the four momentum, the total relativistic energy of the system of particles, and the Pauli–Lubanski pseudovector is:

It can be shown, [1] [13] that in an inertial frame with coordinates the previous three collective variables 1), 2), and 3) are the only ones which can be expressed only in terms of and with

at :

Since the Poincaré generators depend on all the components of the isolated system even when they are at large space-like distances, this result shows that the relativistic collective variables are global (not locally defined) quantities. Therefore, all of them are non-measurable quantities, at least with local measurements. This suggests that there could be problems also with the measurement of the Newton center of mass with local methods.

The three collective variables as 4-quantities in the rest frame

The inertial rest frames of an isolated system can be geometrically defined as the inertial frames whose space-like 3-spaces are orthogonal to the conserved time-like 4-momentum of the system: they differ only for the choice of the inertial observer origin of the 4-coordinates . One chooses the Fokker–Pryce center of inertia 4-vector as origin since it is a 4-vector, so that it is the only collective variable which can be used for an inertial observer. If is the proper time of the atomic clock carried by the inertial observer and the 3-coordinates in the rest 3-spaces , spacetime locations within these 3-spaces can be described in an arbitrary inertial frame with the embeddings, [11] [13]

where . The time-like 4-vector and the three space-like 4-vectors are the columns of the Wigner boosts for time-like orbits of the Poincaré group. As a consequence the 3-coordinates define Wigner spin-1 3-vectors which transform under Wigner rotations [14] when one does a Lorentz transformation. Therefore, due to this Wigner-covariance, these privileged rest 3-spaces (named Wigner 3-spaces ) can be shown to be intrinsically defined and do not depend on the inertial observer describing them. They allow the description of relativistic bound states without the presence of the relative times of their constituents, whose excitations have never been observed in spectroscopy.

In this framework it is possible to describe the three collective variables with 4-quantities , such that . It can be shown [11] [13] that they have the following expressions in terms of (the Jacobi data at for the canonical center of mass), and

The locations in the privileged rest Wigner 3-space of the canonical center of mass and of the center of energy are

and

.

The pseudo-worldline of the canonical center of mass is always nearer to the center of inertia than the center of energy.

Møller world-tube of non-covariance

Møller has shown that if in an arbitrary inertial frame one draws all the pseudo-worldlines of and associated with every possible inertial frame, then they fill a world-tube around the 4-vector with a transverse invariant Møller radius determined by the two Casimirs of the isolated system. This world-tube describes the region of non-covariance of the relativistic collective variables and puts a theoretical limit for the localization of relativistic particles. This can be seen by taking the difference between and either or . In both cases the difference has only a spatial component perpendicular to both and and a magnitude ranging from zero to the Møller radius as the three-velocity of the isolated particle system in the arbitrary inertial frame ranges from 0 towards c. Since the difference has only spatial component it is evident that the volume corresponds to a non-covariance world-tube around the Fokker-Pryce 4-vector .

Since the Møller radius is of the order of the Compton wavelength of the isolated system, it is impossible to explore its interior without producing pairs, namely without taking into account relativistic quantum mechanics. Moreover, the world-tube is the remnant of the energy conditions of general relativity in the flat Minkowski solution: if a material body has its material radius less that its Møller radius, then in some reference frame the energy density of the body is not definite positive even if the total energy is positive.

The difference among the three relativistic collective variables and the non-covariance world-tube are global (not locally defined) effects induced by the Lorentz signature of Minkowski spacetime and disappear in the non-relativistic limit.

See also

Related Research Articles

<span class="mw-page-title-main">Four-momentum</span> 4D relativistic energy and momentum

In special relativity, four-momentum is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In mathematical physics, Minkowski space is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity.

<span class="mw-page-title-main">Proper time</span> Elapsed time between two events as measured by a clock that passes through both events

In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval between two events on a world line is the change in proper time. This interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

The Nambu–Goto action is the simplest invariant action in bosonic string theory, and is also used in other theories that investigate string-like objects. It is the starting point of the analysis of zero-thickness string behavior, using the principles of Lagrangian mechanics. Just as the action for a free point particle is proportional to its proper time — i.e., the "length" of its world-line — a relativistic string's action is proportional to the area of the sheet which the string traces as it travels through spacetime.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. Depending on the definition of the term, there may also be an applied pressure gradient in the flow direction.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

<span class="mw-page-title-main">Four-tensor</span>

In physics, specifically for special relativity and general relativity, a four-tensor is an abbreviation for a tensor in a four-dimensional spacetime.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">Elliptic coordinate system</span>

In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

<span class="mw-page-title-main">Elliptic cylindrical coordinates</span>

Elliptic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional elliptic coordinate system in the perpendicular -direction. Hence, the coordinate surfaces are prisms of confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.

<span class="mw-page-title-main">Prolate spheroidal coordinates</span>

Prolate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the focal axis of the ellipse, i.e., the symmetry axis on which the foci are located. Rotation about the other axis produces oblate spheroidal coordinates. Prolate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two smallest principal axes are equal in length.

<span class="mw-page-title-main">Oblate spheroidal coordinates</span> Three-dimensional orthogonal coordinate system

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

<span class="mw-page-title-main">Two-body Dirac equations</span> Quantum field theory equations

In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

References

  1. 1 2 3
    • Pauri, M.; Prosperi, G. M. (1975). "Canonical realizations of the Poincaré group. I. General theory". Journal of Mathematical Physics. 16 (7): 1503–1521. Bibcode:1975JMP....16.1503P. doi:10.1063/1.522701.
    • Pauri, M. (1980). "Canonical (Possibly Lagrangian) Realizations of the Poincaré Group with Increasing Mass-Spin Trajectories". In Wolf, K. B. (ed.). Group Theoretical Methods in Physica. Lecture Notes in Physics. Vol. 165. Berlin: Springer. pp. 615–622. doi:10.1007/3-540-10271-X_395. ISBN   3-540-10271-X.
  2. Newton, T. D.; Wigner, E. P. (1949). "Localized States for Elementary Systems". Reviews of Modern Physics. 21 (3): 400–406. Bibcode:1949RvMP...21..400N. doi: 10.1103/RevModPhys.21.400 .
  3. Pryce, M. H. L. (1948). "The Mass-Centre in the Restricted Theory of Relativity and Its Connexion with the Quantum Theory of Elementary Particles". Proceedings of the Royal Society A. 195 (1040): 62–81. Bibcode:1948RSPSA.195...62P. doi: 10.1098/rspa.1948.0103 . JSTOR   98303.
  4. Fokker, A. D. (1929). Relativiteitstheorie. Groningen: Noordhoff. p. 171.
  5. Fleming, Gordon N. (1965). "Covariant Position Operators, Spin, and Locality". Physical Review. 137 (1B): B188–B197. Bibcode:1965PhRv..137..188F. doi:10.1103/PhysRev.137.B188.
  6. Kalnay, A. J. (1971). "The Localization Problem". In Bunge, M. (ed.). Problems in the Foundations of Physics. Studies in the Foundations, Methodology and Philosophy of Science. Vol. 4. Berlin: Springer. pp. 93–110. doi:10.1007/978-3-642-80624-7_7. ISBN   978-3-642-80624-7.
  7. Lorente, M.; Roman, P. (1974). "General expressions for the position and spin operators of relativistic systems". Journal of Mathematical Physics. 15 (1): 70–74. Bibcode:1974JMP....15...70L. doi:10.1063/1.1666508.
  8. Sazdjian, H. (1979). "Position variables in classical relativistic hamiltonian mechanics". Nuclear Physics B. 161 (2–3): 469–492. Bibcode:1979NuPhB.161..469S. doi:10.1016/0550-3213(79)90224-4.
  9. Alba, D.; Crater, H. W.; Lusanna, L. (2007). "Hamiltonian relativistic two-body problem: center of mass and orbit reconstruction". Journal of Physics A: Mathematical and Theoretical. 40 (31): 9585–9607. arXiv: hep-th/0610200 . Bibcode:2007JPhA...40.9585A. doi:10.1088/1751-8113/40/31/029. S2CID   1602061.
  10. 1 2 3 Alba, D.; Crater, H. W.; Lusanna, L. (2011). "Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics". Journal of Mathematical Physics. 52 (6): 062301. arXiv: 0907.1816 . Bibcode:2011JMP....52f2301A. doi:10.1063/1.3591131. S2CID   119169628.
  11. Lusanna, L. (2013). "From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect". In Bellucci, S. (ed.). Black Objects in Supergravity. Springer Proceedings in Physics. Vol. 144. Cham: Springer. pp. 267–343. arXiv: 1205.2481 . doi:10.1007/978-3-319-00215-6_8. ISBN   978-3-319-00215-6. S2CID   117404702.
  12. 1 2 3 Alba, D.; Lusanna, L.; Pauri, M. (2002). "Centers of mass and rotational kinematics for the relativistic N-body problem in the rest-frame instant form". Journal of Mathematical Physics. 43 (4): 1677–1727. arXiv: hep-th/0102087 . Bibcode:2002JMP....43.1677A. doi:10.1063/1.1435424.
  13. Weinberg, Steven (1995). The Quantum Theory of Fields . Cambridge University Press.