Crayfish plague | |
---|---|
Sporangia and hyphae | |
Scientific classification | |
Domain: | Eukaryota |
Clade: | Diaphoretickes |
Clade: | SAR |
Clade: | Stramenopiles |
Phylum: | Oomycota |
Order: | Saprolegniales |
Family: | Leptolegniaceae |
Genus: | Aphanomyces |
Species: | A. astaci |
Binomial name | |
Aphanomyces astaci | |
Crayfish plague (Aphanomyces astaci) is a water mold that infects crayfish, most notably the European Astacus which dies within a few weeks of being infected. When experimentally tested, species from Australia, New Guinea and Japan were also found to be susceptible to the infection. [2]
Crayfish plague invades tissue with hyphae. The hyphae develop sporangia that release amoeboid primary spores, which develop into flagellated secondary zoospores after encystment. The secondary zoospores have two flagella each and can repeatedly encyst before finally reaching a host, attaching and germinating. [3] : 4 [4]
Crayfish plague first arrived in Europe in Italy in 1859, either with imported crayfish from North America, [5] or in ballast water discharge. [6] After its original introduction in Italy in 1860, it spread quickly through Europe and was discovered in Sweden in 1907, in Spain in 1972, in Norway in 1971, in Great Britain in 1981, in Turkey in 1984 and in Ireland in 1987.
In 1959, to bolster dwindling stocks of native crayfish, the signal crayfish was introduced to Sweden. [5] The signal crayfish was known to be resistant, and it was not recognised at that time that it was a carrier of the disease. [5] In 2015, after 150 years of contact, no resistance had been discovered in native European crayfish. [7] But during later years, some populations that apparently have achieved different levels of resistance have been discovered. [8]
This species was studied and named by the German Mycologist Friedrich Schikora (1859–1932), from a type specimen in Germany in 1906.
Transport of signal crayfish, red swamp crayfish and infected native European freshwater crayfish between waters is the main cause of contamination, though the disease can also be spread via items that have been in contact with contaminated water, such as a fishing tackle or footwear. [9] The spores are sensitive to high or low temperatures. Most authorities have local rules and regulations to minimize the movement of water between different waterbodies (in for example a boat), and recommend that crayfish used as bait should come from the same water as that being fished, or should be frozen to at least −10 °C (14 °F) for one day before use, if there is a risk of contamination. The spores of crayfish plague disappear from an infected water system (connected lakes and rivers) within a few weeks once the last infected crayfish is removed. [9] Reintroduction is then possible, as long as no infected waters are in contact with the lake.
Infection with Aphanomyces astaci is accompanied by few signs in its early stages, and the first indication of infection may be mortality. [10] In the later stages, the muscles of the tail may appear whitened, or brownish-red where blood cells have encapsulated the hyphae. The effects of the neurotoxins in the oomycete can include appearing in daytime (crayfish are typically nocturnal) and a lack of coordination. [10]
Crayfish are freshwater crustaceans belonging to the infraorder Astacidea, which also contains lobsters. Taxonomically, they are members of the superfamilies Astacoidea and Parastacoidea. They breathe through feather-like gills. Some species are found in brooks and streams, where fresh water is running, while others thrive in swamps, ditches, and paddy fields. Most crayfish cannot tolerate polluted water, although some species, such as Procambarus clarkii, are hardier. Crayfish feed on animals and plants, either living or decomposing, and detritus.
The signal crayfish is a North American species of crayfish. It was introduced to Europe in the 1960s to supplement the North European Astacus astacus fisheries, which were being damaged by crayfish plague, but the imports turned out to be a carrier of that disease. The signal crayfish is now considered an invasive species across Europe, Japan, and California, ousting native species there.
Saprolegnia is a genus of water moulds often called cotton moulds because of the characteristic white or grey fibrous patches they form. Current taxonomy puts Saprolegnia as a genus of the heterokonts in the order Saprolegniales.
Phytophthora cinnamomi, also known as cinnamon fungus, is a soil-borne water mould that produces an infection which causes a condition in plants variously called "dieback", "root rot", or, "ink disease".
Myxobolus cerebralis is a myxosporean parasite of salmonids that causes whirling disease in farmed salmon and trout and also in wild fish populations. It was first described in rainbow trout in Germany in 1893, but its range has spread and it has appeared in most of Europe, the United States, South Africa, Canada and other countries from shipments of cultured and wild fish. In the 1980s, M. cerebralis was found to require a tubificid oligochaete to complete its life cycle. The parasite infects its hosts with its cells after piercing them with polar filaments ejected from nematocyst-like capsules. This infects the cartilage and possibly the nervous tissue of salmonids, causing a potentially lethal infection in which the host develops a black tail, spinal deformities, and possibly more deformities in the anterior part of the fish.
Kudoa thyrsites is a myxosporean parasite of marine fishes. It has a worldwide distribution, and infects a wide range of host species. This parasite is responsible for causing economic losses to the fisheries sector, by causing post-mortem "myoliquefaction", a softening of the flesh to such an extent that the fish becomes unmarketable. It is not infective to humans.
Aphanomyces is a genus of water moulds. As of 2003 there were about 45 described species. Many of these water moulds are known as ecologically important pathogens of species of plants and animals, including fish, crustaceans, and agricultural crop plants. Aphanomyces water moulds are "one of the most important yield-limiting factors in production of legumes and sugarbeet."
Eğirdir is a lake in the Lakes Region of Turkey. The town of Eğirdir lies near its southern end, 107 kilometers north of Antalya. With an area of 482 square kilometres (186 sq mi) it is the fourth largest lake in Turkey, and the second largest freshwater lake.
Chytridiomycosis is an infectious disease in amphibians, caused by the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. Chytridiomycosis has been linked to dramatic population declines or extinctions of amphibian species in western North America, Central America, South America, eastern Australia, east Africa (Tanzania), and Dominica and Montserrat in the Caribbean. Much of the New World is also at risk of the disease arriving within the coming years. The fungus is capable of causing sporadic deaths in some amphibian populations and 100% mortality in others. No effective measure is known for control of the disease in wild populations. Various clinical signs are seen by individuals affected by the disease. A number of options are possible for controlling this disease-causing fungus, though none has proved to be feasible on a large scale. The disease has been proposed as a contributing factor to a global decline in amphibian populations that apparently has affected about 30% of the amphibian species of the world. Some research found evidence insufficient for linking chytrid fungi and chytridiomycosis to global amphibian declines, but more recent research establishes a connection and attributes the spread of the disease to its transmission through international trade routes into native ecosystems.
Procambarus clarkii, known variously as the red swamp crayfish, Louisiana crawfish or mudbug, is a species of cambarid crayfish native to freshwater bodies of northern Mexico, and southern and southeastern United States, but also introduced elsewhere, where it is often an invasive pest.
Batrachochytrium dendrobatidis, also known as Bd or the amphibian chytrid fungus, is a fungus that causes the disease chytridiomycosis in amphibians.
Aphanomyces euteiches is a water mould, or oomycete, plant pathogen responsible for the disease Aphanomyces root rot. The species Aphanomyces euteiches can infect a variety of legumes. Symptoms of the disease can differ among hosts but generally include reduced root volume and function, leading to stunting and chlorotic foliage. Aphanomyces root rot is an important agricultural disease in the United States, Europe, Australia, New Zealand, and Japan. Management includes using resistant crop varieties and having good soil drainage, as well as testing soil for the pathogen to avoid infected fields.
Phytophthora cactorum is a fungal-like plant pathogen belonging to the Oomycota phylum. It is the causal agent of root rot on rhododendron and many other species, as well as leather rot of strawberries.
Phytophthora nicotianae or black shank is an oomycete belonging to the order Peronosporales and family Peronosporaceae.
Pythium irregulare is a soil borne oomycete plant pathogen. Oomycetes, also known as "water molds", are fungal-like protists. They are fungal-like because of their similar life cycles, but differ in that the resting stage is diploid, they have coenocytic hyphae, a larger genome, cellulose in their cell walls instead of chitin, and contain zoospores and oospores.
Aphanomyces cochlioides is a plant pathogen that can affect commodity crops like spinach, Swiss chard, beets and related species. In spinach the pathogen is responsible for the black root "rot" that can damage plants.
Plasmopara viticola, the causal agent of grapevine downy mildew, is a heterothallic oomycete that overwinters as oospores in leaf litter and soil. In the spring, oospores germinate to produce macrosporangia, which under wet condition release zoospores. Zoospores are splashed by rain into the canopy, where they swim to and infect through stomata. After 7–10 days, yellow lesions appear on foliage. During favorable weather the lesions sporulate and new secondary infections occur.
Austropuccinia is a monotypic genus of rust native to South America with the only species Austropuccinia psidii, commonly known as myrtle rust, guava rust, or ʻōhiʻa rust. It affects plants in the family Myrtaceae. It is a member of the fungal complex called the guava rust group. The spores have a distinctive yellow to orange colour, occasionally encircled by a purple ring. They are found on lesions on new growth including shoots, leaves, buds and fruits. Leaves become twisted and may die. Infections in highly susceptible species may result in the death of the host plant.
Black rot on orchids is caused by Pythium and Phytophthora species. Black rot targets a variety of orchids but Cattleya orchids are especially susceptible. Pythium ultimum and Phytophthora cactorum are known to cause black rot in orchids.
Lagenidium giganteum forma caninum is a fungus-like organism belonging to the genus Lagenidium that causes lagenidiosis in some mammal species. Lagenidiosis is a disease characterized by progressive, severe and invasive cutaneous, subcutaneous, and disseminated infection. Clinical and pathological aspects of the disease are almost identical to pythiosis. The first cases of lagenidiosis in mammals were officially reported in dogs in 2003. Since then, it has become increasingly recognized in dogs and cats as a cause of skin lesions.