Crotonic acid

Last updated
Crotonic acid
Crotonic acid.svg
Crotonic acid 3D ball.png
Names
Preferred IUPAC name
(2E)-But-2-enoic acid
Other names
(E)-But-2-enoic acid
(E)-2-Butenoic acid
Crotonic acid
trans-2-Butenoic acid
β-Methylacrylic acid
3-Methylacrylic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.213 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C4H6O2/c1-2-3-4(5)6/h2-3H,1H3,(H,5,6)/b3-2+ Yes check.svgY
    Key: LDHQCZJRKDOVOX-NSCUHMNNSA-N Yes check.svgY
  • InChI=1/C4H6O2/c1-2-3-4(5)6/h2-3H,1H3,(H,5,6)/b3-2+
    Key: LDHQCZJRKDOVOX-NSCUHMNNBH
  • C/C=C/C(O)=O
  • O=C(O)/C=C/C
Properties
C4H6O2
Molar mass 86.090 g·mol−1
Density 1.02 g/cm3
Melting point 70 to 73 °C (158 to 163 °F; 343 to 346 K)
Boiling point 185 to 189 °C (365 to 372 °F; 458 to 462 K)
Acidity (pKa)4.69 [1]
Hazards
Safety data sheet (SDS) SIRI.org
Related compounds
Other anions
crotonate
propionic acid
acrylic acid
butyric acid
succinic acid
malic acid
tartaric acid
fumaric acid
pentanoic acid
tetrolic acid
Related compounds
butanol
butyraldehyde
crotonaldehyde
2-butanone
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Crotonic acid ((2E)-but-2-enoic acid) is a short-chain unsaturated carboxylic acid described by the formula CH3CH=CHCO2H. The name crotonic acid was given because it was erroneously thought to be a saponification product of croton oil. [2] It crystallizes as colorless needles from hot water. With a cis-alkene, Isocrotonic acid is an isomer of crotonic acid. Crotonic acid is soluble in water and many organic solvents. Its odor is similar to that of butyric acid.

Contents

Production

Crotonic acid produced industrially by oxidation of crotonaldehyde: [3] [4] :230

CH3CH=CHCHO + 1/2 O2 → CH3CH=CHCO2H

A number of other methods exist, including the Knoevenagel condensation of acetaldehyde with malonic acid in pyridine: [3] :229

Synthesis Crotonic acid A.svg

The alkaline hydrolysis of allyl cyanide followed by the intramolecular rearrangement of the double bond: [5] [6]

Hydrolysis Allyl cyanide.svg

Furthermore, it is formed during the distillation of 3-hydroxybutyric acid: [7]

Synthesis Crotonic acid D.svg

Properties

Crotonic acid crystallizes in the monoclinic crystal system in the space group P21/a (space group 14, position 3) with the lattice parameters a = 971 pm, b = 690 pm, c = 775 pm and β = 104.0°. The unit cell contains four formula units. [8]

Reactions

Crotonic acid converts into butyric acid by hydrogenation or by reduction with zinc and sulfuric acid. [9]

Hydration Crotonic acid.svg

Upon treatment with chlorine or bromine, crotonic acid converts to 2,3-dihalobutyric acids: [9]

Chlorination Crotonic acid.svg

Crotonic acid adds hydrogen bromide to form 3-bromobutyric acid. [9] [10]

Hydrobromination Crotonic acid.svg

The reaction with alkaline potassium permanganate solution affords 2,3-dihydroxybutyric acid. [9]

Oxidation Crotonic acid.svg

Upon heating with acetic anhydride, crotonic acid converts to the acid anhydride: [11]

Esterification of crotonic acid using sulfuric acid as a catalyst provides the corresponding crotonate esters:

Synthesis Ethyl crotonate.svg

Crotonic acid reacts with hypochlorous acid to 2-chloro-3-hydroxybutyric acid. This can either be reduced with sodium amalgam to butyric acid, can form with sulfuric acid 2-chlorobutenoic acid, react with hydrogen chloride to 2,3-dichlorobutenoic acid or with potassium ethoxide to 3-methyloxirane-2-carboxylic acid. [12]

Crotonic acid Reaction B.svg

Crotonic acid reacts with ammonia at the alpha position in the presence of mercury(II) acetate. This reaction provides DL-threonine. [13]

Use

Crotonic acid is mainly used as a comonomer with vinyl acetate. [14] The resulting copolymers are used in paints and adhesives. [4]

Crotonyl chloride reacts with N-ethyl-2-methylaniline (N-ethyl-o-toluidine) to provide crotamiton, which is used as an agent against scabies. [15]

Crotamiton synthesis Crotamiton synthesis V.svg
Crotamiton synthesis

Safety

Its LD50 is 1 g/kg (oral, rats). [4] It irritates eyes, skin, and respiratory system. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Ketene</span> Organic compound of the form >C=C=O

In organic chemistry, a ketene is an organic compound of the form RR'C=C=O, where R and R' are two arbitrary monovalent chemical groups. The name may also refer to the specific compound ethenone H2C=C=O, the simplest ketene.

<span class="mw-page-title-main">Diels–Alder reaction</span> Chemical reaction

In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism. More specifically, it is classified as a thermally-allowed [4+2] cycloaddition with Woodward–Hoffmann symbol [π4s + π2s]. It was first described by Otto Diels and Kurt Alder in 1928. For the discovery of this reaction, they were awarded the Nobel Prize in Chemistry in 1950. Through the simultaneous construction of two new carbon–carbon bonds, the Diels–Alder reaction provides a reliable way to form six-membered rings with good control over the regio- and stereochemical outcomes. Consequently, it has served as a powerful and widely applied tool for the introduction of chemical complexity in the synthesis of natural products and new materials. The underlying concept has also been applied to π-systems involving heteroatoms, such as carbonyls and imines, which furnish the corresponding heterocycles; this variant is known as the hetero-Diels–Alder reaction. The reaction has also been generalized to other ring sizes, although none of these generalizations have matched the formation of six-membered rings in terms of scope or versatility. Because of the negative values of ΔH° and ΔS° for a typical Diels–Alder reaction, the microscopic reverse of a Diels–Alder reaction becomes favorable at high temperatures, although this is of synthetic importance for only a limited range of Diels-Alder adducts, generally with some special structural features; this reverse reaction is known as the retro-Diels–Alder reaction.

<span class="mw-page-title-main">Allyl group</span> Chemical group (–CH₂–CH=CH₂)

In organic chemistry, an allyl group is a substituent with the structural formula −CH2−HC=CH2. It consists of a methylene bridge attached to a vinyl group. The name is derived from the scientific name for garlic, Allium sativum. In 1844, Theodor Wertheim isolated an allyl derivative from garlic oil and named it "Schwefelallyl". The term allyl applies to many compounds related to H2C=CH−CH2, some of which are of practical or of everyday importance, for example, allyl chloride.

<span class="mw-page-title-main">Benzoin condensation</span> Reaction between two aromatic aldehydes

The benzoin addition is an addition reaction involving two aldehydes. The reaction generally occurs between aromatic aldehydes or glyoxals, and results in formation of an acyloin. In the classic example, benzaldehyde is converted to benzoin.

The Japp–Klingemann reaction is a chemical reaction used to synthesize hydrazones from β-keto-acids and aryl diazonium salts. The reaction is named after the chemists Francis Robert Japp and Felix Klingemann.

Chloral, also known as trichloroacetaldehyde or trichloroethanal, is the organic compound with the formula Cl3CCHO. This aldehyde is a colourless liquid that is soluble in a wide range of solvents. It reacts with water to form chloral hydrate, a once widely used sedative and hypnotic substance.

<span class="mw-page-title-main">Wilhelm Rudolph Fittig</span> German chemist (1835–1910)

Wilhelm Rudolph Fittig was a German chemist. He discovered the pinacol coupling reaction, mesitylene, diacetyl and biphenyl. Fittig studied the action of sodium on ketones and hydrocarbons. He discovered the Fittig reaction or Wurtz–Fittig reaction for the synthesis of alkylbenzenes, he proposed a diketone structure for benzoquinone and isolated phenanthrene from coal tar. He discovered and synthesized the first lactones and investigated structures of piperine, naphthalene, and fluorene.

<span class="mw-page-title-main">Crotonaldehyde</span> Chemical compound

Crotonaldehyde is a chemical compound with the formula CH3CH=CHCHO. The compound is usually sold as a mixture of the E- and Z-isomers, which differ with respect to the relative position of the methyl and formyl groups. The E-isomer is more common (data given in Table is for the E-isomer). This lachrymatory liquid is moderately soluble in water and miscible in organic solvents. As an unsaturated aldehyde, crotonaldehyde is a versatile intermediate in organic synthesis. It occurs in a variety of foodstuffs, e.g. soybean oils.

In organic chemistry, the Nef reaction is an organic reaction describing the acid hydrolysis of a salt of a primary or secondary nitroalkane to an aldehyde or a ketone and nitrous oxide. The reaction has been the subject of several literature reviews.

<span class="mw-page-title-main">Wagner-Jauregg reaction</span>

The Wagner-Jauregg reaction is a classic organic reaction in organic chemistry, named after Theodor Wagner-Jauregg, describing the double Diels–Alder reaction of 2 equivalents of maleic anhydride with a 1,1-diarylethylene. After aromatization of the bis-adduct, the ultimate reaction product is a naphthalene compound with one phenyl substituent.

<span class="mw-page-title-main">Methyl acrylate</span> Chemical compound

Methyl acrylate is an organic compound, more accurately the methyl ester of acrylic acid. It is a colourless liquid with a characteristic acrid odor. It is mainly produced to make acrylate fiber, which is used to weave synthetic carpets. It is also a reagent in the synthesis of various pharmaceutical intermediates. Owing to the tendency of methyl acrylate to polymerize, samples typically contain an inhibitor such as hydroquinone.

<span class="mw-page-title-main">Knorr quinoline synthesis</span>

The Knorr quinoline synthesis is an intramolecular organic reaction converting a β-ketoanilide to a 2-hydroxyquinoline using sulfuric acid. This reaction was first described by Ludwig Knorr (1859–1921) in 1886

<span class="mw-page-title-main">Ethenone</span> Organic compound with the formula H2C=C=O

In organic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.

<span class="mw-page-title-main">Conhydrine</span> Chemical compound

Conhydrine is a poisonous alkaloid found in poison hemlock in small quantities.

<span class="mw-page-title-main">2,3-Dichloro-5,6-dicyano-1,4-benzoquinone</span> Chemical compound

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (or DDQ) is the chemical reagent with formula C6Cl2(CN)2O2. This oxidant is useful for the dehydrogenation of alcohols, phenols, and steroid ketones. DDQ decomposes in water, but is stable in aqueous mineral acid.

<span class="mw-page-title-main">Allyl cyanide</span> Chemical compound

Allyl cyanide is an organic compound with the formula CH2CHCH2CN. Like other small alkyl nitriles, allyl cyanide is colorless and soluble in organic solvents. Allyl cyanide occurs naturally as an antifeedant and is used as a cross-linking agent in some polymers.

Radical theory is an obsolete scientific theory in chemistry describing the structure of organic compounds. The theory was pioneered by Justus von Liebig, Friedrich Wöhler and Auguste Laurent around 1830 and is not related to the modern understanding of free radicals. In this theory, organic compounds were thought to exist as combinations of radicals that could be exchanged in chemical reactions just as chemical elements could be interchanged in inorganic compounds.

<span class="mw-page-title-main">2-Carboxybenzaldehyde</span> Chemical compound

2-Carboxybenzaldehyde is a chemical compound. It consists of a benzene ring, with an aldehyde and a carboxylic acid as substituents that are ortho to each other. The compound exhibits ring–chain tautomerism: the two substituents can react with each other to form 3-hydroxyphthalide, a cyclic lactol. This lactol reacts readily with Grignard reagents, forming alkyl- and aryl-substituted phthalides. Other benzo-fused heterocyclic compounds can be derived from 2-carboxybenzaldehyde, including isoindolinones and phthalazinones, with a variety of pharmacological properties, such as the antihistamine azelastine.

<span class="mw-page-title-main">Cyameluric acid</span> Chemical compound

Cyameluric acid or 2,5,8-trihydroxy-s-heptazine is a chemical compound with formula C
6
N
7
O
3
H
3
, usually described as a heptazine molecule with the hydrogen atoms replaced by hydroxyl groups –OH; or any of its tautomers.

<span class="mw-page-title-main">Sulfur dicyanide</span> Chemical compound

Sulfur dicyanide is an inorganic compound with the formula S(CN)2. A white, slightly unstable solid, the compound is mainly of theoretical and fundamental interest given its simplicity. It is the first member of the dicyanosulfanes Sx(CN)2, which includes thiocyanogen ((SCN)2) and higher polysulfanes up to S4(CN)2. According to X-ray crystallography, the molecule is planar, the SCN units are linear, with an S-C-S angle of 95.6°.

References

  1. Dawson, R. M. C.; et al. (1959). Data for Biochemical Research. Oxford: Clarendon Press.
  2. Chisholm, Hugh, ed. (1911). "Crotonic Acid"  . Encyclopædia Britannica . Vol. 7 (11th ed.). Cambridge University Press. p. 511.
  3. 1 2 Beyer, Hans; Walter, Wolfgang (1984). Organische Chemie (in German). Stuttgart: S. Hirzel Verlag. ISBN   3-7776-0406-2.
  4. 1 2 3 Schulz, R. P.; Blumenstein, J.; Kohlpaintner, C. (2005). "Crotonaldehyde and Crotonic Acid". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_083. ISBN   978-3527306732.
  5. Rinne, A.; Tollens, B. (1871). "Ueber das Allylcyanür oder Crotonitril" [On allyl cyanide or crotononitrile]. Justus Liebigs Annalen der Chemie . 159 (1): 105–109. doi:10.1002/jlac.18711590110.
  6. Pomeranz, C. (1906). "Ueber Allylcyanid und Allylsenföl" [On allyl cyanide and allylic mustard oil]. Justus Liebigs Annalen der Chemie . 351 (1–3): 354–362. doi:10.1002/jlac.19073510127.
  7. Beilstein, F. (1893). Handbuch der organischen Chemie (in German). Vol. 1 (3rd ed.). Verlag Leopold Voss. p. 506.
  8. Shimizu, S.; Kekka, S.; Kashino, S.; Haisa, M. (1974). "Topochemical Studies. III. The Crystal and Molecular Structures of Crotonic Acid, CH3CH=CHCO2H, and Crotonamide, CH3CH=CHCONH2". Bulletin of the Chemical Society of Japan. 47 (7): 1627–1631. doi: 10.1246/bcsj.47.1627 .
  9. 1 2 3 4 Heilbron (1953). "Crotonic acid". Dictionary of Organic Compounds. 1: 615.
  10. Lovén, J. M.; Johansson, H. (1915). "Einige schwefelhaltige β-Substitutionsderivate der Buttersäure" [Some sulfur-containing β-substitution derivatives of butyric acid]. Berichte der deutschen chemischen Gesellschaft . 48 (2): 1254–1262. doi:10.1002/cber.19150480205.
  11. Clover, A. M.; Richmond, G. F. (1903). "The Hydrolysis of Organic Peroxides and Peracids". American Chemical Journal . 29 (3): 179–203.
  12. Beilstein, F. (1893). Handbuch der organischen Chemie (in German). Vol. 1 (3rd ed.). Verlag Leopold Voss. p. 562.
  13. Carter, H. E.; West, H. D. (1955). "dl-Threonine". Organic Syntheses ; Collected Volumes, vol. 3, p. 813.
  14. 1 2 Entry on Butensäuren . at: Römpp Online . Georg Thieme Verlag, retrieved January 7, 2020.
  15. Kleemann, A.; Engel, J. Pharmazeutische Wirkstoffe: Synthesen, Patente, Anwendungen. Vol. 5 (2nd rev. and updated ed.). Stuttgart & New York: Georg Thieme Verlag. p. 251. ISBN   3-13-558402-X.