Culicinae

Last updated

Culicinae
Mosquito 2007-2.jpg
Culiseta longiareolata
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Culicidae
Subfamily: Culicinae

The Culicinae are the most extensive subfamily of mosquitoes (Culicidae) and have species in every continent except Antarctica, but are highly concentrated in tropical areas. Mosquitoes are best known as parasites to many vertebrate animals and vectors for disease. They are holometabolous insects, and most species lay their eggs in stagnant water, to benefit their aquatic larval stage.

Contents

Introduction

The subfamily Culicinae is the largest subfamily of Culicidae, a family of Nematocera dipterans. There are 3,046 species of Culicinae mosquitoes, in 108 genera and 11 tribes. Members of the Culicinae subfamily are small flies with fore wings for flight and hind wings reduced to halteres for balance. The mosquitoes also have long, slender, legs and proboscis-style mouth parts for feeding on vertebrate blood or plant fluids. Only the females are blood feeders, requiring a high quality protein meal before they can oviposit. Because the mosquitoes are well adapted for finding hosts, the females can move quickly from one blood meal to another, and when injecting their saliva, can inject pathogens picked up from other hosts and thus efficiently spread disease.

Lifecycle

Culicinae mosquitoes are holometabolous, going through four distinct life stages: egg, larva, pupa, and adult. The duration of each stage is species-specific, but all Culicinae mosquitoes are multivoltine. The egg, larval, and pupal stages are aquatic. Adults leave the water by flight to find plants or vertebrates on which to feed. Oviposition can occur in natural reservoirs of salt water or fresh water, or temporary pools, but oviposition sites are generally stagnant. All Psorophora and some Aedes species oviposit on soil where the eggs remain, unhatched, till flooded. Many species associate closely with humans, using accumulated ground water in developed areas for oviposition. Some species use plant cavities for oviposition. These species can, as larvae, drill into the plant for air.

Eggs

Culicinae eggs are laid in groups by adult females, often numbering over a hundred. Most species lay the eggs on the surface of stagnant water. The female lays the eggs vertically and side by side, held together by a sticky substance excreted to coat the eggs, head end down, creating an egg raft that is convex below and concave above with ends that are typically upturned. Species that use this form of egg-laying typically hatch as first instar larvae within a few hours of laying. Oviposition on the surface of stagnant water is most common, but some species of Aedes and all Psorophora deposit their eggs in areas that will flood. Eggs are laid and embryological development occurs, but the eggs do not hatch till flooded. After flooding, the eggs will hatch within two to three days.

Larvae

Culicinae larvae are adapted to almost every aquatic environment worldwide, excepting flowing streams and open areas of large water masses. Larvae have three body regions – head, thorax, and abdomen – as well as having compound eyes and antennae on their heads. The same body regions can be found in Culicinae adults, but the form of each region is very different in the larvae and adults. The larvae have four instars from hatching to pupation that occur over four days to two weeks. Culicinae larvae can be distinguished from larvae of other subfamilies by the presence of the posterior siphon. The siphon is used for breathing and breaks the water surface, so the larvae can take in air. Most species hang from the surface of the water, anterior end down, so the siphon stays at the water surface. Some species of Mansonia and Coquillettidia use the siphon differently, piercing underwater plants to take oxygen. Larvae eat small aquatic organisms and plant material in the water using brush-style and grinding mouth parts. A few species are predatory and have additional mouth parts for grasping. Larvae use jerks of their bodies for locomotion, combined with propulsion using the mouth bristles. They are sensitive to the conditions of the water in which they live, including light, temperature, and many other factors, and are also subject to predation and depend on aquatic vegetation to hide from predators.

Pupae

Culicinae pupae are aquatic and do not feed, but they do require air intake. All pupae must come to the water surface for air, with the exception of Mansonia and Coquillettidia species. Pupae are exarate, allowing movement of the exposed abdomen. Thrashing of the abdomen can move the pupae quickly, sideways or downward, but as soon as movement of the abdomen stops, the pupae return to the surface of the water. The pupa naturally rises to the surface of the water due to an air pocket between the wing cases that make it lighter than water. Pupation lasts as little as one day to as much as several weeks, because some diapause can occur.

Adults

Adult mosquitoes are about equal in proportions of males and females, but males emerge from the pupal stage before females. Males stay near the breeding ground and mate soon after the females emerge. Females only need to mate once, then store sperm to use over their lifetimes. After mating, adults leave the breeding ground and can fly great distances. Culicinae adults inhabit almost every environment, and both males and females feed on plant sugars. Females also feed on animal blood, which most species need before they can lay eggs. After a blood meal, females take two or more days to digest the blood before oviposition. After egglaying, females begin searching for another host for a blood meal. Different species of mosquitoes have preferences to blood meals from specific species of hosts, but can feed on other species. Adults have three body regions, with narrow membranes joining the segments, and are two to 15 mm in length. The first body region, the head, holds the large compound eyes, proboscis-style mouth parts, and plumose antennae. The antennae of males are more plumose than those of females, to catch pheromones to find a mate. The thorax is covered in scales and setae helpful in species identification. Attached to the thorax are three pairs of long, slender legs, a pair of fore wings used for flight, and hind wings reduced to halteres for balance. The abdomen is slender, but membranous so it can swell when feeding. The abdomen has 10 segments, but only eight are visible. The last two segments are reduced and used for reproduction. The lifespan of adult Culicinae can vary greatly based on environment, predation, and pest control.

Feeding

Culicinae adults of both sexes feed on plant sugars, such as nectar. Feeding on blood is only practiced by females, to gain a high-protein meal for egg production. The mouth parts of females are adapted for piercing the skin of hosts, whereas the similar mouth parts of males are incapable of piercing skin. When feeding on blood, females use their large compound eyes to initially find a host. When near a host, females can detect changes in light and odors. They can then land and use their probosces to feel for a place to bite. To feed, they pierce the skin and inject saliva containing an anticoagulant and an anesthetic. The anesthetic reduces pain so the host does not detect the bite, and the anticoagulant prevents blood from clotting so they can continue to feed. Pathogenic organisms contained in the saliva injection by the female mosquitoes can quickly spread diseases.

Taxonomy

Culicine mosquito in 15 million year old amber Ancient mosquito.jpg
Culicine mosquito in 15 million year old amber

The subfamily Culicinae has 3,046 species in 108 genera that are sorted into 11 tribes. The tribes and genera they contain are shown below, with the number of species in each genus noted.



Aedeomyiini

Aedini

Culicini

Culisetini

Ficalbiini

Hodgesiini

Mansoniini

Orthopodomyiini

Sabethini

Toxorhynchitini

Uranotaeniini

Related Research Articles

<span class="mw-page-title-main">Mosquito</span> Family of flies

Mosquitoes, the Culicidae, are a family of small flies consisting of 3,600 species. The word mosquito is Spanish and Portuguese for little fly. Mosquitoes have a slender segmented body, one pair of wings, three pairs of long hair-like legs, and specialized, highly elongated, piercing-sucking mouthparts. All mosquitoes drink nectar from flowers; females of some species have in addition adapted to drink blood. The group diversified during the Cretaceous period. Evolutionary biologists view mosquitoes as micropredators, small animals that parasitise larger ones by drinking their blood without immediately killing them. Medical parasitologists view mosquitoes instead as vectors of disease, carrying protozoan parasites or bacterial or viral pathogens from one host to another.

<span class="mw-page-title-main">Gulf fritillary</span> Sole species in brush-footed butterfly genus Agraulis

The Gulf fritillary or passion butterfly is a bright orange butterfly in the subfamily Heliconiinae of the family Nymphalidae. That subfamily was formerly set apart as a separate family, the Heliconiidae. The Heliconiinae are "longwing butterflies", which have long, narrow wings compared to other butterflies.

<i>Aedes albopictus</i> Species of mosquito

Aedes albopictus, from the mosquito (Culicidae) family, also known as the (Asian) tiger mosquito or forest mosquito, is a mosquito native to the tropical and subtropical areas of Southeast Asia. In the past few centuries, however, this species has spread to many countries through the transport of goods and international travel. It is characterized by the white bands on its legs and body.

<i>Anopheles</i> Genus of mosquito

Anopheles is a genus of mosquito first described by the German entomologist J. W. Meigen in 1818, and are known as nail mosquitoes and marsh mosquitoes. Many such mosquitoes are vectors of the parasite Plasmodium, a genus of protozoans that cause malaria in birds, reptiles, and mammals, including humans. The Anopheles gambiae mosquito is the best-known species of marsh mosquito that transmits the Plasmodium falciparum, which is a malarial parasite deadly to human beings; no other mosquito genus is a vector of human malaria.

<i>Culex</i> Genus of mosquitoes

Culex or typical mosquitoes are a genus of mosquitoes, several species of which serve as vectors of one or more important diseases of birds, humans, and other animals. The diseases they vector include arbovirus infections such as West Nile virus, Japanese encephalitis, or St. Louis encephalitis, but also filariasis and avian malaria. They occur worldwide except for the extreme northern parts of the temperate zone, and are the most common form of mosquito encountered in some major U.S. cities, such as Los Angeles.

<i>Eristalis tenax</i> Species of fly

Eristalis tenax, the common drone fly, is a common, migratory, cosmopolitan species of hover fly. It is the most widely distributed syrphid species in the world, and is known from all regions except the Antarctic. It has been introduced into North America and is widely established. It can be found in gardens and fields in Europe and Australia. It has also been found in the Himalayas.

<i>Culex restuans</i> Species of fly

Culex restuans is a species of mosquito known to occur in Canada, the United States, Mexico, Guatemala, Honduras, and the Bahamas. It is a disease vector for St. Louis encephalitis and West Nile virus. In 2013 West Nile Virus positive specimens were collected in Southern California.

<i>Aedes triseriatus</i> Species of mosquito

Aedes triseriatus is a member of the true fly order. It is called the eastern treehole mosquito due to its predilection towards breeding in stagnant water that is found in natural holding containers such as tree holes. It is native to the eastern United States and southern Canada and favors hardwood habitats. It has been found as far south as the Florida Keys, as far west as Idaho and Utah, and as far north as Quebec and Ontario. This species has not yet been found in Europe, but it has the potential to spread through international trade. In 2004, it was found in a shipment of tires travelling from Louisiana to France, but it was identified and targeted with insecticides that truncated its spread. It is a known vector of La Crosse encephalitis and canine heartworm disease. In the laboratory, it has been found to vector several other viruses including yellow fever, eastern encephalitis, Venezuelan encephalitis, and western encephalitis. Because of its potential for international spread and its proclivity for transmitting disease, monitoring the distribution of this species is essential.

<span class="mw-page-title-main">Hydrachnidia</span> Group of mites

Hydrachnidia, also known as "water mites", Hydrachnidiae, Hydracarina or Hydrachnellae, are among the most abundant and diverse groups of benthic arthropods, composed of 6,000 described species from 57 families. As water mites of Africa, Asia, and South America have not been well-studied, the numbers are likely to be far greater. Other taxa of parasitengone mites include species with semi-aquatic habits, but only the Hydracarina are properly subaquatic. Water mites follow the general Parasitengona life cycle: active larva, inactive (calyptostasic) protonymph, active deutonymph, inactive tritonymph and active adult. Usually, larvae are parasites, while deutonymphs and adults are predators.

<i>Culex quinquefasciatus</i> Species of fly

Culex quinquefasciatus, commonly known as the southern house mosquito, is a medium-sized mosquito found in tropical and subtropical regions of the world. It is a vector of Wuchereria bancrofti, avian malaria, and arboviruses including St. Louis encephalitis virus, Western equine encephalitis virus, Zika virus and West Nile virus. It is taxonomically regarded as a member of the Culex pipiens species complex. Its genome was sequenced in 2010, and was shown to have 18,883 protein-coding genes.

<i>Mansonia</i> (fly) Genus of flies

Mansonia mosquitoes are large black or brown mosquitoes with sparkling on their wings and legs. They breed in ponds and lakes containing certain aquatic plants, especially the floating type like Pistia stratiotes and water hyacinth. The eggs are laid in star-shaped clusters on the undersurface of leaves of these plants. The larvae and pupae are found attached to the rootlets of these plants by their siphons. They obtain their air supply from these rootlets. When preparing to transform into adults, these pupae come to the surface of water and the fully formed adults emerge and escape. The control of Mansonia mosquitoes accomplished by removal or destruction of the aquatic host plants by herbicides.

<i>Coquillettidia perturbans</i> Species of fly

Coquillettidia perturbans is a species of mosquito that have been documented in every continent except Antarctica. This mosquito is a known as a vector of West Nile virus and Eastern equine encephalomyelitis. The geographic range of C. perturbans is increasing due to the growing extensity of the feeding area. They are known to exist throughout the United States, mainly with a southern distribution, and are mammalophilic.

<span class="mw-page-title-main">Parasitic flies of domestic animals</span> Overview of parasite-transmitting flies

Many species of flies of the two-winged type, Order Diptera, such as mosquitoes, horse-flies, blow-flies and warble-flies, cause direct parasitic disease to domestic animals, and transmit organisms that cause diseases. These infestations and infections cause distress to companion animals, and in livestock industry the financial costs of these diseases are high. These problems occur wherever domestic animals are reared. This article provides an overview of parasitic flies from a veterinary perspective, with emphasis on the disease-causing relationships between these flies and their host animals. The article is organized following the taxonomic hierarchy of these flies in the phylum Arthropoda, order Insecta. Families and genera of dipteran flies are emphasized rather than many individual species. Disease caused by the feeding activity of the flies is described here under parasitic disease. Disease caused by small pathogenic organisms that pass from the flies to domestic animals is described here under transmitted organisms; prominent examples are provided from the many species.

<i>Chironomus zealandicus</i> Species of midge

Chironomus zealandicus, commonly known as the New Zealand midge, common midge, or non-biting midge, is an insect of the Chironomidae family that is endemic to New Zealand. The worm-like larvae are known to fisherman and have a common name of blood worm due to their red color and elongated blood gills.

<i>Anopheles freeborni</i> Species of Mosquito

Anopheles freeborni, commonly known as the western malaria mosquito, is a species of mosquito in the family Culicidae. It is typically found in the western United States and Canada. Adults are brown to black, with yellow-brown hairs and gray-brown stripes on the thorax. Their scaly wings have four dark spots, which are less distinct in the male.

<i>Bezzia nobilis</i> Species of fly

Bezzia nobilis is a species of biting midges in the family Ceratopogonidae. It is widely considered one of the most common Bezzia species; it is found in Eurasian regions, all over the United States, Central America, and even into South American countries like Brazil. B. nobilis seem to prefer aquatic environments; they are commonly observed in stagnant water pools in Eurasia regions and marshes in the southern United States. Adults of this species are easily distinguished by their black and yellow striped legs. Pupae are recognized by their brown bodies, abdominal spines, and respiratory horns. B. nobilis larvae are distinguished by brown heads and white bodies. Little information is known on their life cycle or mating habits. B. nobilis is a predatory species. While some research suggests they mainly feed on larvae of other insect species, experiments suggest they prefer immobile, easy prey such as dead adult flies, bacteria, and protozoa.

<i>Toxorhynchites rutilus</i> Species of fly

Toxorhynchites rutilus, also known as the elephant mosquito or treehole predatory mosquito, is a species of mosquito in the family Culicidae. Unlike most species in the genus that populate the tropics, Tx. rutilus is endemic to temperate regions. As their name suggests, these mosquitoes commonly lay their eggs in treeholes where their larvae are predators on a variety of arthropods. As with other mosquitoes, they also inhabit other bodies of stagnant water such as in a tire or artificial containers. but not large bodies of water like ponds and ground pools. Females are able to strategically locate breeding sites that already contain prey to oviposit in.

<i>Opifex fuscus</i> Species of insect

Opifex fuscus, known commonly as the saltpool mosquito or by its Māori name naeroa, is an endemic mosquito that is widespread along the coast of New Zealand.

<i>Aedes taeniorhynchus</i> Species of fly

Aedes taeniorhynchus, or the black salt marsh mosquito, is a mosquito in the family Culicidae. It is a carrier for encephalitic viruses including Venezuelan equine encephalitis and can transmit Dirofilaria immitis. It resides in the Americas and is known to bite mammals, reptiles, and birds. Like other mosquitoes, Ae. taeniorhynchus adults survive on a combination diet of blood and sugar, with females generally requiring a blood meal before laying eggs.

<i>Laccotrephes tristis</i> Species of insect

Laccotrephes tristis is a species of water scorpion also commonly known as a toe-biter, that occurs Australia-wide and is part of the family Nepidae. They are an aquatic predatory insect that breath air. Australian water scorpions inhabit shallow stagnant water, part of freshwater creeks, waterholes and gorges.

References