Names | |
---|---|
Preferred IUPAC name 1,1′-Oxybis(2,3,4,5,6-pentabromobenzene) | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.013.277 |
EC Number |
|
KEGG | |
PubChem CID | |
RTECS number |
|
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C12Br10O | |
Molar mass | 959.17 g/mol |
Appearance | White or pale yellow solid |
Density | 3.364 g/cm3 solid |
Melting point | 294 to 296 °C (561 to 565 °F; 567 to 569 K) [1] |
Boiling point | 425 °C (797 °F; 698 K) (decomposition) [1] |
20-30 μg/litre [2] | |
Hazards | |
GHS labelling: | |
Warning | |
H302, H312, H319, H332, H341, H373, H413 | |
P201, P202, P260, P261, P264, P270, P271, P273, P280, P281, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P308+P313, P312, P314, P322, P330, P337+P313, P363, P405, P501 | |
NFPA 704 (fire diamond) | |
Flash point | 241 °C (466 °F; 514 K) |
Safety data sheet (SDS) | |
Related compounds | |
Related polybrominated diphenyl ethers | pentabromodiphenyl ether, octabromodiphenyl ether |
Related compounds | Diphenyl ether |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Decabromodiphenyl ether (also referred to as decaBDE, DBDE, BDE-209) is a brominated flame retardant which belongs to the group of polybrominated diphenyl ethers (PBDEs). It was commercialised in the 1970s and was initially thought to be safe, [3] [4] but is now recognised as a hazardous and persistent pollutant. It was added to Annex A of the Stockholm Convention on Persistent Organic Pollutants in 2017, [5] [6] which means that treaty members must take measures to eliminate its production and use. The plastics industry started switching to decabromodiphenyl ethane as an alternative in the 1990s, but this is now also coming under regulatory pressure due to concerns over human health.
Commercial decaBDE is a technical mixture of various PBDE congeners (related compounds). Congener number 209 (decabromodiphenyl ether) and nonabromodiphenyl ether are the main components. [7] The term decaBDE alone refers to only decabromodiphenyl ether, the single "fully brominated" PBDE. [8]
DecaBDE is a flame retardant. The chemical "is always used in conjunction with antimony trioxide" in polymers, mainly in "high impact polystyrene (HIPS) which is used in the television industry for cabinet backs." [7] DecaBDE is also used for "polypropylene drapery and upholstery fabric" by means of backcoating and "may also be used in some synthetic carpets." [7]
The annual demand worldwide was estimated as 56,100 tonnes in 2001, of which the Americas accounted for 24,500 tonnes, Asia 23,000 tonnes, and Europe 7,600 tonnes. [7] In 2012 between 2500 and 5000 metric tonnes of Deca-BDE was sold in Europe. [9] As of 2007, Albemarle in the U.S., Chemtura in the U.S., ICL-IP in Israel, and Tosoh Corporation in Japan are the main manufacturers of DecaBDE. [10]
Despite its listing in Annex A to the Stockholm Convention, decaBDE is still produced in China, namely in the provinces Shandong and Jiangsu. [11] [12]
As stated in a 2006 review, "Deca-BDE has long been characterized as an environmentally stable and inert product that was not capable of degradation in the environment, not toxic, and therefore of no concern." [13] However, "some scientists had not particularly believed that Deca-BDE was so benign, particularly as evidence to this effect came largely from the industry itself." [13] One problem in studying the chemical was that "the detection of Deca-BDE in environmental samples is difficult and problematic"; only in the late 1990s did "analytical advances... allow detection at much lower concentrations." [13]
DecaBDE is released by diverse processes into the environment, such as emissions from manufacture of decaBDE-containing products and from the products themselves. [8] Elevated concentrations can be found in air, water, soil, food, sediment, sludge, and dust. [14] A 2006 study concluded "in general, environmental concentrations of BDE-209 [i.e., decaBDE] appear to be increasing." [14]
An important scientific issue is whether decaBDE debrominates in the environment to PBDE congeners with fewer bromine atoms, since such PBDE congeners may be more toxic than decaBDE itself. [8] Debromination may be "biotic" (caused by biological means) or "abiotic" (caused by nonbiological means). [10] The European Union (EU) in May 2004 stated "the formation of PBT/vPvB (Persistent, Bioaccumulative, and Toxic / very Persistent, very Bioaccumulative) substances in the environment as a result of degradation [of decaBDE] is a possibility that cannot be quantified based on current knowledge." [7] In September 2004 an Agency for Toxic Substances and Disease Registry (ATSDR) report asserted that "DecaBDE seems to be largely resistant to environmental degradation." [8]
In May 2006, the EPHA Environment Network (now The Health and Environment Alliance) released a report reviewing the available scientific literature [15] and concluding the following:
Subsequently, many studies have been published concerning decaBDE debromination. Common anaerobic soil bacteria debrominated decaBDE and octaBDE in a 2006 study. [16] In 2006-2007 studies, metabolic debromination of decaBDE was demonstrated in fish, [17] birds, [18] cows, [19] and rats. [20] A 2007 study by La Guardia and colleagues measured PBDE congeners "from a wastewater treatment plant (sludge) to receiving stream sediments and associated aquatic biota"; it "support[ed] the hypothesis that metabolic debromination of -209 [i.e., decaBDE] does occur in the aquatic environment under realistic conditions." [21] In another 2007 study, Stapleton and Dodder exposed "both a natural and a BDE 209 spiked [house] dust material" to sunlight, and found "nonabrominated congeners" and "octabrominated congeners" consistent with debromination of decaBDE in the environment. [22]
In March 2007 the Illinois Environmental Protection Agency concluded "it can be questioned how much abiotic and microbial degradation [of decaBDE] occurs under normal environmental conditions, and it is not clear whether the more toxic lower-brominated PBDEs are produced in significant quantities by any of these pathways." [23] In September 2010, the UK Advisory Committee on Hazardous Substances issued an opinion that ‘there is strong but incomplete, scientific evidence indicating that Deca-BDE has the potential to undergo transformation to lower brominated congeners in the environment'. [24]
Exposure to decaBDE is thought to occur by means of ingestion. [8] Humans and animals do not absorb decaBDE well; at most, perhaps 2% of an oral dose is absorbed. [25] [26] It is believed that "the small amount of decaBDE that is absorbed can be metabolized". [8]
Once in the body, decaBDE "might leave unchanged or as metabolites, mainly in the feces and in very small amounts in the urine, within a few days," in contrast with "lower brominated PBDEs... [which] might stay in your body for many years, stored mainly in body fat." [8] In workers with occupational exposure to PBDEs, the calculated apparent half-life for decaBDE was 15 days, as opposed to (for example) an octaBDE congener with a half-life of 91 days. [27]
In the general population, decaBDE has been found in blood and breast milk, but at lower levels than other PBDE congeners such as 47, 99, and 153. [28] A 2004 investigation carried out by the WWF detected decaBDE in blood samples from 3 of 14 ministers of health and environment of European Union countries, while (for example) PBDE-153 was found in all 14. [29]
In 2004, ATSDR wrote "Nothing definite is known about the health effects of PBDEs in people. Practically all of the available information is from studies of laboratory animals. Animal studies indicate that commercial decaBDE mixtures are generally much less toxic than the products containing lower brominated PBDEs. DecaBDE is expected to have relatively little effect on the health of humans." [8] Based on animal studies, the possible health effects of decaBDE in humans involve the liver, thyroid, reproductive/developmental effects, and neurological effects. [30]
ATSDR stated in 2004 "We don’t know if PBDEs can cause cancer in people, although liver tumors developed in rats and mice that ate extremely large amounts of decaBDE throughout their lifetime. On the basis of evidence for cancer in animals, decaBDE is classified as a possible human carcinogen by EPA [i.e., the United States Environmental Protection Agency ]." [8]
One 2006 review concluded "Decreases in thyroid hormone levels have been reported in several studies, and thyroid gland enlargement (an early sign of hypothyroidism) has been shown in studies of longer duration exposure." [30] A 2007 experiment giving decaBDE to pregnant mice found that decaBDE "is likely an endocrine disrupter in male mice following exposure during development" based on results such as decreased serum triiodothyronine. [31]
"Significant data gaps" exist in the scientific literature on a possible relationship between decaBDE and reproductive/developmental effects. [30] A 2006 study of mice found that decaBDE decreased some "sperm functions." [32]
EPA has determined that daily Deca exposures should be less than 7 μg/kg-d (micrograms per kilogram bodyweight per day) to minimize the chance of brain and nervous system toxicity. [33] EPA based their assessment on a study in 2003 on neurotoxicity in mice, which some have "criticized for certain procedural and statistical problems." [30] A 2007 study in mice "suggest[ed] that decaBDE is a developmental neurotoxicant that can produce long-term behavioral changes following a discrete period of neonatal exposure." [34] Administration of decaBDE to male rats at 3 days of age in another 2007 study "was shown to disrupt normal spontaneous behaviour at 2 months of age." [35]
In 2002–2003 the American Chemistry Council's Brominated Flame Retardant Industry Panel, citing an unpublished 1997 study, estimated that 280 deaths due to fires are prevented each year in the U.S. because of the use of decaBDE. [25] [26] The industry advocacy group American Council on Science and Health, in a 2006 report largely concerning decaBDE, said that "the benefits of PBDE flame retardants, in terms of lives saved and injuries prevented, far outweigh any demonstrated or likely negative health effects from their use." [36] A 2006 study concluded "current levels of Deca in the United States are unlikely to represent an adverse health risk for children." [37] A report from the Swedish National Testing and Research Institute concerning the costs and benefits of decaBDE in television sets that was funded by BSEF assumed "no cost for injuries (either to humans or the environment) due to exposure to flame retardants... as there was no indication that such costs exist for DecaBDE"; it found that decaBDE's benefits exceeded its costs. [38]
In Germany, plastics manufacturers and the textile additives industry "declared in 1986 a voluntary phase-out of the use of PBDEs, including Deca-BDE." [39] Although decaBDE was to be phased out of electrical and electronic equipment in the EU by 2006 under the EU's Restriction of Hazardous Substances Directive (RoHS), decaBDE use has been exempted from RoHS during 2005–2010. [40] [41] [42] A case in the European Court of Justice against the RoHS exemption was decided against Deca-BDE and its use must be phased out by July 1, 2008. [10] Sweden, an EU member, banned decaBDE as of 2007. [28] [43] The former European Brominated Flame Retardant Industry Panel (EBFRIP), now merged with EFRA, the European Flame Retardant Association, stated that Sweden's ban on DecaBDE "was a serious breach of EU law. . The European Commission then started an infringement procedure against Sweden which lead to the Swedish Government repealing this restriction on 1 July 2008 . The environment agency of Norway, which is a member of the European Free Trade Association but is not a member of the EU, recommended that decaBDE be banned from electronic products in 2008. [44]
DecaBDE has been the subject of a ten-year evaluation under the EU Risk Assessment procedure which has reviewed over 1100 studies. The Risk Assessment was published on the EU Official Journal in May 2008. [45] Deca was registered under the EU's REACH Regulation at the end of August 2010.
The UK's Advisory Committee on Hazardous Substances (ACHS) presented their conclusions following a review of the emerging studies on Deca-BDE on 14 September 2010.
On 5 July ECHA withdrew Deca-BDE from its list of priority substances for Authorisation under REACH, therefore closing the public consultation. On 1 August 2014, ECHA submitted a restriction proposal for Deca-BDE. The agency is proposing a restriction on the manufacture, use and placing on the market of the substance and of mixtures and articles containing it. On 17 September 2014, ECHA submitted the restriction report which initiates a six months public consultation. On 9 February 2017, the European Commission adopted Regulation EU 2017/227. Article 1 of this regulation states that Regulation (EC) No 1907/2006 is amended to include a ban on the use of decaBDE in quantities greater than 0.1% by weight, effective from 2 March 2019. Products placed on the market prior to 2 March 2019 are exempt. Furthermore, the use decaBDE in aircraft is permissible until 2 March 2027. [46] This EU process is running in parallel with a UNEP review to determine whether Deca-BDE should be listed as a Persistent Organic Pollutant (POP) under the Stockholm Convention.
As of mid-2007 two states had instituted measures to phase out decaBDE. In April 2007 the state of Washington passed a law banning the manufacture, sale, and use of decaBDE in mattresses as of 2008; the ban "could be extended to TVs, computers and upholstered residential furniture in 2011 provided an alternative flame retardant is approved." [47] [48] In June 2007 the state of Maine passed a law "ban[ning] the use of deca-BDE in mattresses and furniture on January 1, 2008 and phas[ing] out its use in televisions and other plastic-cased electronics by January 1, 2010." [49] [50] As of 2007, other states considering restrictions on decaBDE include California, Connecticut, Hawaii, Illinois, Massachusetts, Michigan, Minnesota, [51] Montana, New York, and Oregon. [43] [52]
On December 17, 2009, as the result of negotiations with EPA, the two U.S. producers of decabromodiphenyl ether (decaBDE), Albemarle Corporation and Chemtura Corporation, and the largest U.S. importer, ICL Industrial Products, Inc., announced commitments to phase out voluntarily decaBDE in the United States by the end of 2013. Archived 2016-01-19 at the Wayback Machine , ,
A number of reports have examined alternatives to decaBDE as a flame retardant. [39] [53] [54] [55] [56] [57] At least three U.S. states have evaluated decaBDE alternatives:
The Restriction of Hazardous Substances Directive 2002/95/EC, short for Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment, was adopted in February 2003 by the European Union.
Polybrominated diphenyl ethers or PBDEs, are a class of organobromine compounds that are used as flame retardants. Like other brominated flame retardants, PBDEs have been used in a wide array of products, including building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams, and textiles. They are structurally akin to polychlorinated diphenyl ethers (PCDEs), polychlorinated biphenyls (PCBs) and other polyhalogenated compounds, consisting of two halogenated aromatic rings. PBDEs are classified according to the average number of bromine atoms in the molecule. The life-saving benefits of fire retardants led to their popularization. Standards for mass transit vehicles continues to increase as of 2021.
Flame retardants are a diverse group of chemicals that are added to manufactured materials, such as plastics and textiles, and surface finishes and coatings. Flame retardants are activated by the presence of an ignition source and prevent or slow the further development of flames by a variety of different physical and chemical mechanisms. They may be added as a copolymer during the polymerisation process, or later added to the polymer at a moulding or extrusion process or applied as a topical finish. Mineral flame retardants are typically additive, while organohalogen and organophosphorus compounds can be either reactive or additive.
Endocrine disruptors, sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds are chemicals that can interfere with endocrine systems. These disruptions can cause numerous adverse human health outcomes, including alterations in sperm quality and fertility; abnormalities in sex organs‚ endometriosis‚ early puberty‚ altered nervous system or immune function; certain cancers; respiratory problems; metabolic issues; diabetes, obesity, or cardiovascular problems; growth, neurological and learning disabilities, and more. Found in many household and industrial products, endocrine disruptors "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis ."
In organic chemistry, organophosphates are a class of organophosphorus compounds with the general structure O=P(OR)3, a central phosphate molecule with alkyl or aromatic substituents. They can be considered as esters of phosphoric acid. Organophosphates are best known for their use as pesticides.
Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic and adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.
A bromide ion is the negatively charged form (Br−) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant materials, and cell stains. Although uncommon, chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption, see potassium bromide. The bromide ion has an ionic radius of 196 pm.
Brominated flame retardants (BFRs) are organobromine compounds that have an inhibitory effect on combustion chemistry and tend to reduce the flammability of products containing them. The brominated variety of commercialized chemical flame retardants comprise approximately 19.7% of the market. They are effective in plastics and textile applications like electronics, clothes, and furniture.
Polybrominated biphenyls (PBBs), also called brominated biphenyls or polybromobiphenyls, are a group of manufactured chemicals that consist of polyhalogenated derivatives of a biphenyl core. Their chlorine analogs are the PCBs. While once widely used commercially, PBBs are now controlled substances under the Restriction of Hazardous Substances Directive, which limits their use in electrical and electronic products sold in the EU.
Halogenated ethers are a subcategory of ethers—organic chemicals that containan oxygen atom connected to two alkyl groups or similar structures. An example of an ether is the solvent diethyl ether. Halogenated ethers differ from other ethers because there are one or more halogen atoms—fluorine, chlorine, bromine, or iodine—as substituents on the carbon groups.. Examples of commonly used halogenated ethers include isoflurane, sevofluorane and desflurane.
A fire retardant is a substance that is used to slow down or stop the spread of fire or reduce its intensity. This is commonly accomplished by chemical reactions that reduce the flammability of fuels or delay their combustion. Fire retardants may also cool the fuel through physical action or endothermic chemical reactions. Fire retardants are available as powder, to be mixed with water, as fire-fighting foams and fire-retardant gels. Fire retardants are also available as coatings or sprays to be applied to an object.
Hexabromocyclododecane is a brominated flame retardant. It consists of twelve carbon, eighteen hydrogen, and six bromine atoms tied to the ring. Its primary application is in extruded (XPS) and expanded (EPS) polystyrene foam used as thermal insulation in construction. Other uses are upholstered furniture, automobile interior textiles, car cushions and insulation blocks in trucks, packaging material, video cassette recorder housing, and electric and electronic equipment. According to UNEP, "HBCD is produced in China, Europe, Japan, and the USA. The last known current annual production is approximately 28,000 tonnes per year. The main share of the market volume is used in Europe and China". Due to its persistence, toxicity, and ecotoxicity, the Stockholm Convention on Persistent Organic Pollutants decided in May 2013 to list hexabromocyclododecane in Annex A to the convention with specific exemptions for production and use in expanded polystyrene and extruded polystyrene in buildings. Because HBCD has 16 possible stereo-isomers with different biological activities, the substance poses a difficult problem for manufacture and regulation.
Pentabromodiphenyl ether is a brominated flame retardant which belongs to the group of polybrominated diphenyl ethers (PBDEs). Because of their toxicity and persistence, their industrial production is to be eliminated under the Stockholm Convention, a treaty to control and phase out major persistent organic pollutants (POP).
Octabromodiphenyl ether is a brominated flame retardant which belongs to the group of polybrominated diphenyl ethers (PBDEs).
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant. The compound is a white solid, although commercial samples appear yellow. It is one of the most common flame retardants.
Diphenyl ether is the organic compound with the formula (C6H5)2O. It is a colorless, low-melting solid. This, the simplest diaryl ether, has a variety of niche applications.
In chemistry, congeners are chemical substances "related to each other by origin, structure, or function".
Susan D. Shaw was an American environmental health scientist, marine toxicologist, explorer, ocean conservationist, and author. A Doctor of Public Health, she was a professor in the Department of Environmental Health Sciences at the School of Public Health at the State University of New York at Albany, and Founder/President of the Shaw Institute, a nonprofit scientific institution with a mission to improve human and ecological health through innovative science and strategic partnerships. Shaw is globally recognized for pioneering high-impact environmental research on ocean pollution, climate change, oil spills, and plastics that has fueled public policy over three decades. In 1983, with landscape photographer Ansel Adams, she published Overexposure, the first book to document the health hazards of photographic chemicals. Shaw is credited as the first scientist to show that brominated flame retardant chemicals used in consumer products have contaminated marine mammals and commercially important fish stocks in the northwest Atlantic Ocean. She became the first scientist to dive into the Gulf of Mexico oil slick following the 2010 BP Deepwater Horizon oil rig explosion to investigate the impacts of chemical dispersants used in response to the spill.
Decabromodiphenyl ethane is a chemical compound used as a brominated flame retardant. It was commercialised in the 1990s as an alternative for decabromodiphenyl ether, following safety concern over that compound. The two molecules are chemically very similar, which gives them a similar application profile. Decabromodiphenyl ethane is now also coming under regulatory pressure.
Bis(2-ethylhexyl)tetrabromophthalate (or TBPH), is a brominated phthalate derivative with the formula C24H34Br4O4 commonly used as a brominated flame retardant (BFR).
{{cite web}}
: CS1 maint: archived copy as title (link){{cite web}}
: CS1 maint: archived copy as title (link)