Dimethylaniline-N-oxide aldolase

Last updated
dimethylaniline-N-oxide aldolase
Identifiers
EC no. 4.1.2.24
CAS no. 37290-58-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme dimethylaniline-N-oxide aldolase (EC 4.1.2.24) catalyzes the chemical reaction

N,N-dimethylaniline N-oxide N-methylaniline + formaldehyde

This enzyme belongs to the family of lyases, specifically the aldehyde-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is N,N-dimethylaniline-N-oxide formaldehyde-lyase (N-methylaniline-forming). Other names in common use include microsomal oxidase II, microsomal N-oxide dealkylase, and N,N-dimethylaniline-N-oxide formaldehyde-lyase.

Related Research Articles

<span class="mw-page-title-main">Dimethylaniline</span> Chemical compound

N,N-Dimethylaniline (DMA) is an organic chemical compound, a substituted derivative of aniline. It consists of a tertiary amine, featuring dimethylamino group attached to a phenyl group. This oily liquid is colourless when pure, but commercial samples are often yellow. It is an important precursor to dyes such as crystal violet.

<span class="mw-page-title-main">Aniline</span> Organic compound (C₆H₅NH₂); simplest aromatic amine

Aniline is an organic compound with the formula C6H5NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical synthesis. Its main use is in the manufacture of precursors to polyurethane, dyes, and other industrial chemicals. Like most volatile amines, it has the odor of rotten fish. It ignites readily, burning with a smoky flame characteristic of aromatic compounds. It is toxic to humans.

In biochemistry, a lyase is an enzyme that catalyzes the breaking of various chemical bonds by means other than hydrolysis and oxidation, often forming a new double bond or a new ring structure. The reverse reaction is also possible. For example, an enzyme that catalyzed this reaction would be a lyase:

Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug or poison. These pathways are a form of biotransformation present in all major groups of organisms and are considered to be of ancient origin. These reactions often act to detoxify poisonous compounds. The study of drug metabolism is called pharmacokinetics.

<span class="mw-page-title-main">Flavin adenine dinucleotide</span> Redox-active coenzyme

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.

Methylotrophs are a diverse group of microorganisms that can use reduced one-carbon compounds, such as methanol or methane, as the carbon source for their growth; and multi-carbon compounds that contain no carbon-carbon bonds, such as dimethyl ether and dimethylamine. This group of microorganisms also includes those capable of assimilating reduced one-carbon compounds by way of carbon dioxide using the ribulose bisphosphate pathway. These organisms should not be confused with methanogens which on the contrary produce methane as a by-product from various one-carbon compounds such as carbon dioxide. Some methylotrophs can degrade the greenhouse gas methane, and in this case they are called methanotrophs. The abundance, purity, and low price of methanol compared to commonly used sugars make methylotrophs competent organisms for production of amino acids, vitamins, recombinant proteins, single-cell proteins, co-enzymes and cytochromes.

<span class="mw-page-title-main">Iproniazid</span> Antidepressant

Iproniazid is a non-selective, irreversible monoamine oxidase inhibitor (MAOI) of the hydrazine class. It is a xenobiotic that was originally designed to treat tuberculosis, but was later most prominently used as an antidepressant drug. However, it was withdrawn from the market because of its hepatotoxicity. The medical use of iproniazid was discontinued in most of the world in the 1960s, but remained in use in France until its discontinuation in 2015.

Any enzyme system that includes cytochrome P450 protein or domain can be called a P450-containing system.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

2-Hydroxyphytanoyl-CoA lyase is a peroxisomal enzyme involved in the catabolism of phytanoic acid by α-oxidation. It requires thiamine diphosphate (ThDP) as cofactor.

Mixed-function oxidase is the name of a family of oxidase enzymes that catalyze a reaction in which each of the two atoms of oxygen in O2 is used for a different function in the reaction.

<span class="mw-page-title-main">Alliinase</span> Class of enzyme

In enzymology, an alliin lyase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Amine oxidase (copper-containing)</span>

Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes which includes both primary-amine oxidase and diamine oxidase; these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. They act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor:

The enzyme S-(hydroxymethyl)glutathione synthase catalyzes the reaction

The enzyme 2-dehydropantoate aldolase catalyzes the chemical reaction:

The enzyme ketotetrose-phosphate aldolase catalyzes the chemical reaction

The enzyme trimethylamine-oxide aldolase catalyzes the chemical reaction

<span class="mw-page-title-main">6-Pyruvoyltetrahydropterin synthase</span> Class of enzymes

The enzyme 6-pyruvoyltetrahydropterin synthase catalyzes the following chemical reaction:

Methylsterol monooxygenase (EC 1.14.13.72, methylsterol hydroxylase, 4-methylsterol oxidase, 4,4-dimethyl-5alpha-cholest-7-en-3beta-ol,hydrogen-donor:oxygen oxidoreductase (hydroxylating)) is an enzyme with systematic name 4,4-dimethyl-5alpha-cholest-7-en-3beta-ol,NAD(P)H:oxygen oxidoreductase (hydroxylating). This enzyme catalyses the following chemical reaction

Hydro-lyases are a type of enzyme. As lyases, hydro-lyases cleave various chemical bonds by means other than hydrolysis and oxidation. Examples of specific hydro-lyases include carbonic anhydrase and fumarase.

References