Eremothecium gossypii

Last updated

Eremothecium gossypii
A gossypii.jpg
Fluorescent micrograph of Eremothecium gossypii mycelium.
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Order:
Family:
Genus:
Species:
E. gossypii
Subspecies:
ATCC 10895, FDAG
Binomial name
Eremothecium gossypii
(S.F. Ashby & W. Nowell) Kurtzman, 1995
Synonyms

Eremothecium gossypii [1] (also known as Ashbya gossypii [2] ) is a filamentous fungus or mold closely related to yeast, but growing exclusively in a filamentous way. It was originally isolated from cotton as a pathogen causing stigmatomycosis by Ashby and Nowell in 1926. This disease affects the development of hair cells in cotton bolls and can be transmitted to citrus fruits, which thereupon dry out and collapse (dry rot disease). In the first part of the 20th century, E. gossypii and two other fungi causing stigmatomycosis ( Eremothecium coryli , Aureobasidium pullulans ) made it virtually impossible to grow cotton in certain regions of the subtropics, causing severe economical losses. Control of the spore-transmitting insects - cotton stainer (Dysdercus suturellus) and Antestiopsis (antestia bugs) - permitted full eradication of infections. E. gossypii was recognized as a natural overproducer of riboflavin (vitamin B2), which protects its spores against ultraviolet light. This made it an interesting organism for industries, where genetically modified strains are still used to produce this vitamin.

Contents

E. gossypii as a model organism

A few years ago, E. gossypii became recognized as an attractive model to study the growth of long and multinucleate fungal cells (hyphae) because of its small genome, haploid nuclei, and efficient gene targeting methods. It is generally assumed that a better understanding of filamentous fungal growth will greatly stimulate the development of novel fungicides. Its use as a model organism is particularly promising because of the high level of gene order conservation (synteny) between the genomes of E. gossypii and the yeast Saccharomyces cerevisiae .[ citation needed ]

Genome

The complete sequencing and annotation of the entire E. gossypii genome, as published in 2004, was initiated when a significant degree of gene synteny was observed in preliminary studies in comparison to the genome of budding yeast, Saccharomyces cerevisiae. This not only helped to improve gene annotation of S. cerevisiae, but also allowed the reconstruction of the evolutionary history of both organisms. E. gossypii and S. cerevisiae originated from a common ancestor which carried about 5000 genes. Divergence of these two close relatives started some 100 million years ago. One branch of evolution involving up to 100 viable genome rearrangements (translocations and inversions), a few million base pair changes, and a limited number of gene deletions, duplications and additions lead to modern E. gossypii with its 4718 protein-coding genes and 9.2 million base pairs (smallest genome of a free-living eukaryote yet characterized) spread over seven chromosomes. The genome of S. cerevisiae underwent a more eventful evolution, which includes a whole-genome duplication.[ citation needed ]

Despite the long evolutionary history of the two organisms and fundamentally different ways of growth and development, the complete synteny map of both genomes reveals 95% of E. gossypii genes are orthologs of S. cerevisiae genes, and 90% map within blocks of synteny (syntenic homologs).

Growth, development and morphology

Development from a spore to a mature mycelium in E. gossypii (kindly provided by Dr. Philipp Knechtle)
a) Ungerminated spore
b) Isotropic growth phase in the germ bubble
c) Unipolar germling
d) Emergence of a second germ tube
e) Emergence of lateral branches and septum generation
f) Apical branching in mature hypha A gossypii Dev.png
Development from a spore to a mature mycelium in E. gossypii (kindly provided by Dr. Philipp Knechtle)
a) Ungerminated spore
b) Isotropic growth phase in the germ bubble
c) Unipolar germling
d) Emergence of a second germ tube
e) Emergence of lateral branches and septum generation
f) Apical branching in mature hypha

The E. gossypii life cycle starts with the only known phase of isotropic growth in wild type: germination of the haploid spore to form a germ bubble. This is followed by apical growth, extending two germ tubes in succession on opposing sites of the germ bubble. More axes of polarity are established with lateral branch formation in young mycelium. Maturation is characterized by apical branching (tip splitting) and a dramatic increase of growth speed (up to 200 μm/h at 30 °C), which enables it to cover an 8 cm Petri dish of full medium in about seven days. Sporulation is thought to be induced by nutrient deprivation, leading to contraction at the septa, cytokinesis and subsequent abscission of sporangia which contain up to eight haploid spores. Hyphae are compartmentalized by septa, which in young parts appear as rings that allow transfer of nuclei and in older parts may appear as closed discs. Compartments typically contain around eight nuclei.


Related Research Articles

<span class="mw-page-title-main">Yeast</span> Informal group of fungi

Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitute 1% of all described fungal species.

<span class="mw-page-title-main">Basidiomycota</span> Division of fungi

Basidiomycota is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Basidiomycota includes these groups: agarics, puffballs, stinkhorns, bracket fungi, other polypores, jelly fungi, boletes, chanterelles, earth stars, smuts, bunts, rusts, mirror yeasts, and Cryptococcus, the human pathogenic yeast.

<span class="mw-page-title-main">Ascomycota</span> Division or phylum of fungi

Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

<i>Saccharomyces cerevisiae</i> Species of yeast

Saccharomyces cerevisiae is a species of yeast. The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been originally isolated from the skin of grapes. It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like Escherichia coli as the model bacterium. It is the microorganism behind the most common type of fermentation. S. cerevisiae cells are round to ovoid, 5–10 μm in diameter. It reproduces by budding.

<i>Schizosaccharomyces pombe</i> Species of yeast

Schizosaccharomyces pombe, also called "fission yeast", is a species of yeast used in traditional brewing and as a model organism in molecular and cell biology. It is a unicellular eukaryote, whose cells are rod-shaped. Cells typically measure 3 to 4 micrometres in diameter and 7 to 14 micrometres in length. Its genome, which is approximately 14.1 million base pairs, is estimated to contain 4,970 protein-coding genes and at least 450 non-coding RNAs.

<i>Candida albicans</i> Species of fungus

Candida albicans is an opportunistic pathogenic yeast that is a common member of the human gut flora. It can also survive outside the human body. It is detected in the gastrointestinal tract and mouth in 40–60% of healthy adults. It is usually a commensal organism, but it can become pathogenic in immunocompromised individuals under a variety of conditions. It is one of the few species of the genus Candida that cause the human infection candidiasis, which results from an overgrowth of the fungus. Candidiasis is, for example, often observed in HIV-infected patients. C. albicans is the most common fungal species isolated from biofilms either formed on (permanent) implanted medical devices or on human tissue. C. albicans, C. tropicalis, C. parapsilosis, and C. glabrata are together responsible for 50–90% of all cases of candidiasis in humans. A mortality rate of 40% has been reported for patients with systemic candidiasis due to C. albicans. By one estimate, invasive candidiasis contracted in a hospital causes 2,800 to 11,200 deaths yearly in the US. Nevertheless, these numbers may not truly reflect the true extent of damage this organism causes, given new studies indicating that C. albicans can cross the blood–brain barrier in mice.

<i>Neurospora crassa</i> Species of ascomycete fungus in the family Sordariaceae

Neurospora crassa is a type of red bread mold of the phylum Ascomycota. The genus name, meaning 'nerve spore' in Greek, refers to the characteristic striations on the spores. The first published account of this fungus was from an infestation of French bakeries in 1843.

Heterothallic species have sexes that reside in different individuals. The term is applied particularly to distinguish heterothallic fungi, which require two compatible partners to produce sexual spores, from homothallic ones, which are capable of sexual reproduction from a single organism.

<span class="mw-page-title-main">Heterokaryon</span>

A heterokaryon is a multinucleate cell that contains genetically different nuclei. Heterokaryotic and heterokaryosis are derived terms. This is a special type of syncytium. This can occur naturally, such as in the mycelium of fungi during sexual reproduction, or artificially as formed by the experimental fusion of two genetically different cells, as e.g., in hybridoma technology.

<span class="mw-page-title-main">Conidium</span> Asexual, non-motile spore of a fungus

A conidium, sometimes termed an asexual chlamydospore or chlamydoconidium, is an asexual, non-motile spore of a fungus. The word conidium comes from the Ancient Greek word for dust, κόνις (kónis). They are also called mitospores due to the way they are generated through the cellular process of mitosis. They are produced exogenously. The two new haploid cells are genetically identical to the haploid parent, and can develop into new organisms if conditions are favorable, and serve in biological dispersal.

<span class="mw-page-title-main">Kanamycin A</span> Antibiotic

Kanamycin A, often referred to simply as kanamycin, is an antibiotic used to treat severe bacterial infections and tuberculosis. It is not a first line treatment. It is used by mouth, injection into a vein, or injection into a muscle. Kanamycin is recommended for short-term use only, usually from 7 to 10 days. As with most antibiotics, it is ineffective in viral infections.

<span class="mw-page-title-main">Mating of yeast</span> Biological process

The yeast Saccharomyces cerevisiae is a simple single-celled eukaryote with both a diploid and haploid mode of existence. The mating of yeast only occurs between haploids, which can be either the a or α (alpha) mating type and thus display simple sexual differentiation. Mating type is determined by a single locus, MAT, which in turn governs the sexual behaviour of both haploid and diploid cells. Through a form of genetic recombination, haploid yeast can switch mating type as often as every cell cycle.

<span class="mw-page-title-main">Saccharomycotina</span> Subdivision of fungi

Saccharomycotina is a subdivision (subphylum) of the division (phylum) Ascomycota in the kingdom Fungi. It comprises most of the ascomycete yeasts. The members of Saccharomycotina reproduce by budding and they do not produce ascocarps.

<span class="mw-page-title-main">Mating in fungi</span> Combination of genetic material between compatible mating types

Fungi are a diverse group of organisms that employ a huge variety of reproductive strategies, ranging from fully asexual to almost exclusively sexual species. Most species can reproduce both sexually and asexually, alternating between haploid and diploid forms. This contrasts with most multicellular eukaryotes such as mammals, where the adults are usually diploid and produce haploid gametes which combine to form the next generation. In fungi, both haploid and diploid forms can reproduce – haploid individuals can undergo asexual reproduction while diploid forms can produce gametes that combine to give rise to the next generation.

Septins are a group of GTP-binding proteins expressed in all eukaryotic cells except plants. Different septins form protein complexes with each other. These complexes can further assemble into filaments, rings and gauzes. Assembled as such, septins function in cells by localizing other proteins, either by providing a scaffold to which proteins can attach, or by forming a barrier preventing the diffusion of molecules from one compartment of the cell to another, or in the cell cortex as a barrier to the diffusion of membrane-bound proteins.

Stigmatomycosis is a fungal disease that occurs in a number of crops, such as cotton, soybean, pecan, pomegranate, citrus, and pistachio. It has been reported on pistachio in Greece, Iran, Russia, and is frequently a problem in California pistachio orchards severely infested by hemipteran insects. In a 1989 survey in California, fruit with stigmatomycosis were found in 90% of samples collected from late June to mid-September and from all growing areas.

<i>Hortaea werneckii</i> Species of fungus

Hortaea werneckii is a species of yeast in the family Teratosphaeriaceae. It is a black yeast that is investigated for its remarkable halotolerance. While the addition of salt to the medium is not required for its cultivation, H. werneckii can grow in close to saturated NaCl solutions. To emphasize this unusually wide adaptability, and to distinguish H. werneckii from other halotolerant fungi, which have lower maximum salinity limits, some authors describe H. werneckii as "extremely halotolerant".

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

Fungal genomes are among the smallest genomes of eukaryotes. The sizes of fungal genomes range from less than 10 Mbp to hundreds of Mbp. The average genome size is approximately 37 Mbp in Ascomycota, 47 Mbp in Basidiomycota and 75 Mbp in Oomycota. The sizes and gene numbers of the smallest genomes of free-living fungi such as those of Wallemia ichthyophaga, Wallemia mellicola or Malassezia restricta are comparable to bacterial genomes. The genome of the extensively researched yeast Saccharomyces cerevisiae contains approximately 12 Mbp and was the first completely sequenced eukaryotic genome. Due to their compact size fungal genomes can be sequenced with less resources than most other eukaryotic genomes and are thus important models for research. Some fungi exist as stable haploid, diploid, or polyploid cells, others change ploidy in response to environmental conditions and aneuploidy is also observed in novel environments or during periods of stress.

<span class="mw-page-title-main">Glossary of mycology</span>

This glossary of mycology is a list of definitions of terms and concepts relevant to mycology, the study of fungi. Terms in common with other fields, if repeated here, generally focus on their mycology-specific meaning. Related terms can be found in glossary of biology and glossary of botany, among others. List of Latin and Greek words commonly used in systematic names and Botanical Latin may also be relevant, although some prefixes and suffixes very common in mycology are repeated here for clarity.

References

  1. Gastmann, Selina; Dünkler, Alexander; Walther, Andrea; Klein, Keith; Wendland, Jürgen (2007). "A molecular toolbox for manipulating Eremothecium coryli". Microbiological Research. 162 (4): 299–307. doi:10.1016/j.micres.2007.05.008. PMID   17716882.
  2. "Species Fungorum - GSD Species".