Euplectella | |
---|---|
![]() | |
Euplectella aspergillum | |
Scientific classification ![]() | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Porifera |
Class: | Hexactinellida |
Order: | Lyssacinosida |
Family: | Euplectellidae |
Subfamily: | Euplectellinae |
Genus: | Euplectella Owen, 1841 [1] |
Type species | |
Euplectella aspergillum | |
Species | |
see text |
Euplectella is a genus of glass sponges which includes the well-known Venus' Flower Basket. Glass sponges have a skeleton [2] made up of silica spicules that can form geometric patterns. These animals are most commonly found on muddy sea bottoms in the Western Pacific and Indian Oceans. [3] They are sessile organisms and do not move once attached to a rock. [4] They can be found at depths between 100 m and 1000 m but are most commonly found at depths greater than 500 m. [5]
The body shape of Euplectella is cylindrical and vase-like with a hole located at the top of the cylinder structure. [6] This tubular shape is referred to as asconoid. [7] The inner structure of this animal is covered by a layer of choanocytes. Euplectella is a member of the class Sclerospongiae or glass sponges. [8] These sponges are anchored to the seafloor by thousands of spicules. Spicules are long glassy fibers that are covered with recurved barbs. Spicules provide high beam strength support for anchoring and strengthening the structure of this animal. [9] The skeleton of this animal is made of silica that is arranged in cylindrical lattice patterns. These patterns enable flexibility and resilience to damage. [10]
This species often has a symbiotic relationship with shrimp. [11] One male and one female shrimp-like Stenopodidea breed and live inside the Venus Flower Basket, a member of the genus Euplectella [12] . Stenopodidea offspring leave through holes in the sponge. Eventually if Stenopodidea become too large, they become trapped in the basket for the remainder of their lifetime. [13] The pair of Stenopodidea that live inside Euplectella, clean it while the waste produced by Euplectella serves as food for the Stenopodidea.
There is very little known about the reproduction of this species. It can reproduce sexually and asexually. Sea sponges have hermaphroditic properties. [14] When conditions are unfavorable, sea sponges resort to asexual reproduction. This occurs through the presence of an ameobocyte on a deteriorating sponge. Once the deteriorating sponge is gone, the clump of cells remaining begins to grow a new sponge. [15] In sexual sea sponge reproduction, gametes are released into the water by male sponges and are absorbed through the inhalant current of the female sponge. Fertilization occurs when the sperm reaches the ovum. The zygote experiences radial holoblastic cleavage and eventually forms free flowing larvae which develop into new sponge. [16]
Euplectella are filter feeders. [17] Water is drawn into its central cavity through holes in the sides of the sponge. Organic debris and microscopic organisms are absorbed through this process. [18] They consume bacteria and small plankton. [19]
Euplectella experiences two main life stages: the larval stage or the adult stage. In the larval stage, the larvae are free flowing in the water. This type of larvae are considered trichimella due to its free swimming nature. [20] Eventually, the larvae attached to rocks and metamorphoses into sea sponge. In the adult stage, Euplectella are sessile and attached firmly to rocks through spicules. [21] It is unclear how long Euplectella generally live however other genus of glass sponge have been known to live up to 15,000 years in the wild. [22] Although the intricate skeleton of Euplectella provides some protection from predation, starfish are known to eat them. [23]
![]() | This section is empty. You can help by adding to it. (April 2022) |
Sponges or sea sponges are primarily marine invertebrates of the metazoan phylum Porifera, a basal animal clade and a sister taxon of the diploblasts. They are sessile filter feeders that are bound to the seabed, and are one of the most ancient members of macrobenthos, with many historical species being important reef-building organisms.
Hexactinellid sponges are sponges with a skeleton made of four- and/or six-pointed siliceous spicules, often referred to as glass sponges. They are usually classified along with other sponges in the phylum Porifera, but some researchers consider them sufficiently distinct to deserve their own phylum, Symplasma. Some experts believe glass sponges are the longest-lived animals on earth; these scientists tentatively estimate a maximum age of up to 15,000 years.
Venus' flower basket is a species of marine glass sponge found in the deep waters of the Pacific Ocean, usually at depths below 500 m (1,600 ft). Like other sponges, they feed by filtering sea water to capture plankton and marine snow. Similar to other glass sponges, they build their skeletons out of silica, which forms a unique lattice structure of spicules. The sponges are usually between 10 cm (3.9 in) and 30 cm (12 in) tall, and their bodies act as refuge for their mutualist shrimp partners. This body structure is of great interest in materials science as the optical and mechanical properties are in some ways superior to man-made materials. Little is known regarding their reproduction habits, however fluid dynamics of their body structure likely influence reproduction and it is hypothesized that they may be hermaphroditic.
An endoskeleton is a structural frame (skeleton) on the inside of an animal, overlaid by soft tissues and usually composed of mineralized tissue. Endoskeletons serve as structural support against gravity and mechanical loads, and provide anchoring attachment sites for skeletal muscles to transmit force and allow movements and locomotion.
Demosponges (Demospongiae) are the most diverse class in the phylum Porifera. They include greater than 90% of all species of sponges with nearly 8,800 species worldwide. They are sponges with a soft body that covers a hard, often massive skeleton made of calcium carbonate, either aragonite or calcite. They are predominantly leuconoid in structure. Their "skeletons" are made of spicules consisting of fibers of the protein spongin, the mineral silica, or both. Where spicules of silica are present, they have a different shape from those in the otherwise similar glass sponges. Some species, in particular from the Antarctic, obtain the silica for spicule building from the ingestion of siliceous diatoms.
The siliceous sponges form a major group of the phylum Porifera, consisting of classes Demospongiae and Hexactinellida. They are characterized by spicules made out of silicon dioxide, unlike calcareous sponges.
Hexasterophora are a subclass of glass sponges in the class Hexactinellida. Most living hexasterophorans can be divided into three orders: Lyssacinosida, Lychniscosida, and Sceptrulophora. Like other glass sponges, hexasterophorans have skeletons composed of overlapping six-rayed spicules. In addition, they can be characterized by the presence of hexasters, a type of microsclere with six rays unfurling into multi-branched structures.
A spongivore is an animal anatomically and physiologically adapted to eating animals of the phylum Porifera, commonly called sea sponges, for the main component of its diet. As a result of their diet, spongivore animals like the hawksbill turtle have developed sharp, narrow bird-like beak that allows them to reach within crevices on the reef to obtain sponges.
Capsospongia, formerly known as Corralia or Corralio, is a middle Cambrian sponge genus known from 3 specimens in the Burgess shale. Its type and only species is Capsospongia undulata. It has a narrow base, and consists of bulging rings which get wider further up the sponge, resulting in a conical shape. Its open top was presumably used to expel water that had passed through the sponge cells and been filtered for nutrients.
Lyssacinosida is an order of glass sponges (Hexactinellida) belonging to the subclass Hexasterophora. These sponges can be recognized by their parenchymal spicules usually being unconnected, unlike in other sponges in the subclass where the spicules form a more or less tightly connected skeleton. Lyssacine sponges have existed since the Upper Ordovician, and three families are still alive today. The Venus' flower basket is one of the most well-known and culturally significant of the glass sponges.
The cloud sponge(Aphrocallistes vastus) is a species of sea sponge in the class Hexactinellida. It is a deep-water reef-forming animal. The species was first described by F.E. Schulze in 1886.
Spicules are structural elements found in most sponges. The meshing of many spicules serves as the sponge's skeleton and thus it provides structural support and potentially defense against predators.
Monorhaphis is a monotypic genus of siliceous deep sea Hexactinellid sponges. The single species is the type species Monorhaphis chuni, a sponge known for creating a single giant basal spicule (G.B.S.) to anchor the sponge in the sediments. The species was described by Franz Eilhard Schulze in 1904 from specimens collected by the German Deep Sea Expedition in 1898–1899. Monorhaphis is also the only genus in the monotypic family Monorhaphididae.
Reticulosa is an extinct order of sea sponges in the class Hexactinellida and the subclass Amphidiscophora. Reticulosans were diverse in shape and size, similar to their modern relatives, the amphidiscosidans. Some were smooth and attached to a surface at a flat point, others were polyhedral or ornamented with nodes, many were covered in bristles, and a few were even suspended above the seabed by a rope-like anchor of braided glass spicules.
Tectitethya crypta is a species of demosponge belonging to the family Tethyidae. Its classified family is characterized by fourteen different known genera, one of them being Tectitethya. It is a massive, shallow-water sponge found in the Caribbean Sea. This sponge was first discovered by Werner Bergmann in 1945 and later classified by de Laubenfels in 1949. It is located in reef areas situated on softer substrates such as sand or mud. Oftentimes, it is covered in sand and algae. This results in an appearance that is cream colored/ gray colored; however, when the animal is washed free of its sediment coverings, its body plan appears more green and gray. T. crypta is characterized by ostia peaking out of its body cavity, with the ability to abruptly open or close, changing the water flow rate through its mesohyl.
Rossellidae is a family of glass sponges belonging to the order Lyssacinosa. The family has a cosmopolitan distribution and is found at a large range of depths.
Silicateins are enzymes which catalyse the formation of biosilica from monomeric silicon compounds extracted from the natural environment. Environmental silicates are absorbed by specific biota, including diatoms, radiolaria, silicoflagellates, and siliceous sponges; silicateins have so far only been found in sponges. Silicateins are homologous to the cysteine protease cathepsin.
Calcifibrospongiidae is a family of sponges belonging to the order Haplosclerida. The order Haplosclerida is distinguished by isodictyal skeleton. In general, Porifera are basal animals with bodies full of pores and channels. Calcifibrospongiidae includes the species Calcifibrospongia actinostromarioides. There have only been ten recorded occurrences of this species: in Hogsty Reef and San Salvador, as well as in the subtropics of the Bahamas.
Oopsacas minuta is a species of glass sponge found in cold submarine caves in the Mediterranean. Unlike most glass sponges, O. minuta lives in shallow waters above 200 meters in depth. At this depth the temperature is low and constant, so silica metabolism is optimized.
{{cite journal}}
: Cite journal requires |journal=
(help)CS1 maint: numeric names: authors list (link)