Eve Marder

Last updated

Eve Marder
Eve Marder.jpg
Born
New York City
Alma mater Brandeis University, University of California, San Diego
Known forDynamic clamp method, studies on the stomatogastric nervous system
AwardsMember of the US National Academy of Sciences, Kavli Prize in Neuroscience
Scientific career
FieldsNeuroscience
Institutions Brandeis University

Eve Marder is a University Professor and the Victor and Gwendolyn Beinfield Professor of Neuroscience at Brandeis University. At Brandeis, Marder is also a member of the Volen National Center for Complex Systems. Dr. Marder is known for her pioneering work on small neuronal networks which her team has interrogated via a combination of complementary experimental and theoretical techniques.

Contents

Marder is particularly well known in the community for her work on neural circuits in the crustacean stomatogastric nervous system (STNS), a small network of 30 neurons. She discovered that circuits are not “hard-wired” to produce a single output or behavior, but can be reconfigured by neuromodulators to produce many outputs and behaviors while still maintaining the integrity of the circuit. Her work has revolutionized the way scientists approach the studies of neural circuits with respect to the study of structural and functional behavior. The general principles that have resulted from her work are thought to be generally applicable to other neural networks, including those in humans.

Marder has received numerous awards for her pioneering work in the field including memberships in the National Academy of Sciences and the American Academy of Arts and Sciences. In 2013, she was named to the National Institute of Health working group for the BRAIN Initiative.

Career, research, and service

Marder was born in Manhattan and raised on the east coast. Although she loved biology from an early age, Marder has shared that she held very diverse academic interests prior to starting her undergraduate degree and in fact entered Brandeis University as an undergraduate in 1965 with a plan to study politics and become a lawyer. [1] She would instead find herself re-captivated by the world of biology and switched majors to Biology after her freshman year. Marder has shared that a pivotal turning point in her scientific self-development was writing a paper on schizophrenia during an abnormal psychology class during her junior year. Her subsequent library studies on inhibition in neural signaling solidified her career goals to become a neuroscientist and launched her on what would become her lifelong academic path. [1]

Marder received her B.A. from Brandeis University in 1969 [1] and subsequently completed Ph.D. studies at University of California, San Diego. It was during her time as a graduate student at UCSD that Marder would be introduced to the specific neural network, the lobster stomatogastric-ganglion system, that would prove pivotal for the rest of her academic career. [1] Marder's doctoral work on the role of acetylcholine in the lobster STG led to a single-author paper in Nature . [2] She completed her postdoctoral training at the University of Oregon in Eugene and the École Normale Supérieure in Paris, France. Marder subsequently began her independent research career at Brandeis University in 1978 as a faculty member in the department in Biology.

Her work on the 30 neurons that compose the lobster stomatogastric ganglion (STG) produced many notable findings. She found that circuits can be modulated by many neuromodulators, which act on the level of populations of neurons, unlike some neurotransmitters, which can only affect specific target neurons. She pioneered work on plasticity and homeostasis, revealing more about how the brain can change dramatically during learning and development yet remain structurally stable. Her recent work examining network variability among healthy individuals shows that a variety of network parameters can produce the same behavioral outcome, challenging a long-standing goal in theoretical neuroscience to model 'ideal' neurons and neural circuits. [3]

Along with Larry Abbott, she also developed the dynamic clamp method, which enables an experimenter to induce mathematically modeled conductances into living neurons to view the output of theoretical circuits. [4]

She is currently an elected counselor for the National Academy of Science, [5] a member of the American Academy of Arts and Sciences and the United States National Academy of Sciences, serves on the National Institutes of Health working group for the BRAIN Initiative, and is a former president of the Society for Neuroscience. [6] She is also a Deputy Editor at eLife, [7] and, due to her early interest in politics, she often writes about science, politics, and society. [8] In 1990 at Brandeis, she established one of the first undergraduate neuroscience programs in the United States. [9]

Select publications

Eve Marder has an extensive publication record in the areas of neuromodulation, computational neuroscience, the dynamics of small networks, and neuropeptides. A selection of works are listed below:

Notable awards

Related Research Articles

<span class="mw-page-title-main">Eric Kandel</span> American neuropsychiatrist

Eric Richard Kandel is an Austrian-born American medical doctor who specialized in psychiatry, a neuroscientist and a professor of biochemistry and biophysics at the College of Physicians and Surgeons at Columbia University. He was a recipient of the 2000 Nobel Prize in Physiology or Medicine for his research on the physiological basis of memory storage in neurons. He shared the prize with Arvid Carlsson and Paul Greengard.

Central pattern generators (CPGs) are self-organizing biological neural circuits that produce rhythmic outputs in the absence of rhythmic input. They are the source of the tightly-coupled patterns of neural activity that drive rhythmic and stereotyped motor behaviors like walking, swimming, breathing, or chewing. The ability to function without input from higher brain areas still requires modulatory inputs, and their outputs are not fixed. Flexibility in response to sensory input is a fundamental quality of CPG-driven behavior. To be classified as a rhythmic generator, a CPG requires:

  1. "two or more processes that interact such that each process sequentially increases and decreases, and
  2. that, as a result of this interaction, the system repeatedly returns to its starting condition."
<span class="mw-page-title-main">Carla J. Shatz</span> American neuroscientist

Carla J. Shatz is an American neurobiologist and an elected member of the American Academy of Arts and Sciences, the American Philosophical Society, the National Academy of Sciences, and the National Academy of Medicine.

<span class="mw-page-title-main">Patricia Goldman-Rakic</span> American neuroscientist

Patricia Goldman-Rakic was an American professor of neuroscience, neurology, psychiatry and psychology at Yale University School of Medicine. She pioneered multidisciplinary research of the prefrontal cortex and working memory.

<span class="mw-page-title-main">Gero Miesenböck</span>

Gero Andreas Miesenböck is an Austrian scientist. He is currently Waynflete Professor of Physiology and Director of the Centre for Neural Circuits and Behaviour (CNCB) at the University of Oxford and a fellow of Magdalen College, Oxford.

<span class="mw-page-title-main">Cornelia Bargmann</span> American neurobiologist

Cornelia Isabella "Cori" Bargmann is an American neurobiologist. She is known for her work on the genetic and neural circuit mechanisms of behavior using C. elegans, particularly the mechanisms of olfaction in the worm. She has been elected to the National Academy of Sciences and had been a Howard Hughes Medical Institute investigator at UCSF and then Rockefeller University from 1995 to 2016. She was the Head of Science at the Chan Zuckerberg Initiative from 2016 to 2022. In 2012 she was awarded the $1 million Kavli Prize, and in 2013 the $3 million Breakthrough Prize in Life Sciences.

<span class="mw-page-title-main">Carol A. Barnes</span> American neuroscientist

Carol A. Barnes is an American neuroscientist who is a Regents' Professor of psychology at the University of Arizona. Since 2006, she has been the Evelyn F. McKnight Chair for Learning and Memory in Aging and is director of the Evelyn F. McKnight Brain Institute. Barnes has been president of the Society for Neuroscience and is a Fellow of the American Association for the Advancement of Science, and foreign member of the Royal Norwegian Society of Sciences and Letters. She was elected to the National Academy of Sciences in 2018.

<span class="mw-page-title-main">John O'Keefe (neuroscientist)</span> American–British neuroscientist

John O'Keefe, is an American-British neuroscientist, psychologist and a professor at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour and the Research Department of Cell and Developmental Biology at University College London. He discovered place cells in the hippocampus, and that they show a specific kind of temporal coding in the form of theta phase precession. He shared the Nobel Prize in Physiology or Medicine in 2014, together with May-Britt Moser and Edvard Moser; he has received several other awards. He has worked at University College London for his entire career, but also held a part-time chair at the Norwegian University of Science and Technology at the behest of his Norwegian collaborators, the Mosers.

Laurence Frederick Abbott is an American theoretical neuroscientist, who is currently the William Bloor Professor of Theoretical Neuroscience at Columbia University, where he helped create the Center for Theoretical Neuroscience. He is widely regarded as one of the leaders of theoretical neuroscience, and is coauthor, along with Peter Dayan, on the first comprehensive textbook on theoretical neuroscience, which is considered to be the standard text for students and researchers entering theoretical neuroscience. He helped invent the dynamic clamp method alongside Eve Marder.

Yang Dan is a Chinese-American neuroscientist. She is the Paul Licht Distinguished Professor of Neurobiology at the University of California, Berkeley and a Howard Hughes Medical Institute (HHMI) Investigator. She is a past recipient of the Alfred P. Sloan Research Fellowship, Beckman Young Investigator Award, and Society for Neuroscience Research Awards for Innovation in Neuroscience. Recognized for her research on the neural circuits that control behavior, she was elected to the US National Academy of Sciences in 2018.

HollisT. Cline is an American neuroscientist and the Director of the Dorris Neuroscience Center at the Scripps Research Institute in California. Her research focuses on the impact of sensory experience on brain development and plasticity.

Tim P. Vogels is a professor of theoretical neuroscience and research leader at the Institute of Science and Technology Austria. He is primarily known for his scholarly contributions to the study of neuronal plasticity related to learning and memory in the brain.

Joshua R Sanes is an American neurobiologist who is known for his contributions to the understanding of synapse development. Throughout his career, Sanes has been the recipient of various awards and honors, including membership to the U.S. National Academy of Sciences. His research involves an interdisciplinary approach which focuses mainly on the formation of synapses at the neuromuscular junction by combining the sciences of psychology, chemistry, biology, and engineering to study these circuits and employ molecular and genetic imaging to understand their function. Sanes currently lives in Boston, Massachusetts with his wife, Susan, and their two children.

Misha Tsodyks is a leading theoretical and computational neuroscientist whose research focuses on identifying neural algorithms underlying cortical systems and cognitive behavior. His most notable achievements include demonstrating the importance of sparsity in neural networks, describing the mechanisms of short-term synaptic plasticity and working and associative memory.

Marla Beth Feller is the Paul Licht Distinguished Professor in Biological Sciences and Member of the Helen Wills Neuroscience Institute at the University of California, Berkeley. She studies the mechanisms that underpin the assembly of neural circuits during development. Feller is a Fellow of the American Association for the Advancement of Science, member of the American Academy of Arts and Sciences and member of the National Academy of Sciences.

<span class="mw-page-title-main">Kanaka Rajan</span> Indian-American computational neuroscientist

Kanaka Rajan is a computational neuroscientist in the Department of Neurobiology at Harvard Medical School and founding faculty in the Kempner Institute for the Study of Natural and Artificial Intelligence at Harvard University. Rajan trained in engineering, biophysics, and neuroscience, and has pioneered novel methods and models to understand how the brain processes sensory information. Her research seeks to understand how important cognitive functions — such as learning, remembering, and deciding — emerge from the cooperative activity of multi-scale neural processes, and how those processes are affected by various neuropsychiatric disease states. The resulting integrative theories about the brain bridge neurobiology and artificial intelligence.

Marta Zlatic is a Croatian neuroscientist who is group leader at the MRC Laboratory of Molecular Biology in Cambridge, UK. Her research investigates how neural circuits generate behaviour.

<span class="mw-page-title-main">Claire Wyart</span> French biophysicist and neuroscientist

Claire Julie Liliane Wyart is a French neuroscientist and biophysicist, studying the circuits underlying the control of locomotion. She is a chevalier of the Ordre national du Mérite.

Sonja Hofer is a German neuroscientist studying the neural basis of sensory perception and sensory-guided decision-making at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour. Her research focuses on how the brain processes visual information, how neural networks are shaped by experience and learning, and how they integrate visual signals with other information in order to interpret the outside world and guide behaviour. She received her undergraduate degree from the Technical University of Munich, her PhD at the Max Planck Institute of Neurobiology in Martinsried, Germany, and completed a post doctorate at the University College London. After holding an Assistant Professorship at the Biozentrum University of Basel in Switzerland for five years, she now is a group leader and Professor at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour since 2018.

Angela Charlotte Roberts is a British neurobiologist who is a professor of physiology at the University of Cambridge. Her research considers the neural circuits that underpin cognition and emotion. She leads the Cambridge Marmoset Research Centre. She was awarded the 2020 Goldman-Rakic Prize for Outstanding Achievement in Cognitive Neuroscience.

References

  1. 1 2 3 4 "Eve Marder | Gruber Foundation". gruber.yale.edu. Retrieved May 14, 2019.
  2. Marder, Eve (October 25, 1974). "Acetylcholine as an excitatory neuromuscular transmitter in the stomatogastric system of the lobster". Nature. 251 (5477): 730–1. Bibcode:1974Natur.251..730M. doi:10.1038/251730a0. PMID   4154406. S2CID   4293312.
  3. Ganguli, Ishani (October 31, 2007). "Neuroscience: A gut feeling". Nature. 450 (7166): 21–23. doi: 10.1038/450021a . PMID   17972855.
  4. Gorman, James (November 10, 2014). "New York Times". Learning How Little We Know About the Brain. Retrieved March 8, 2015.
  5. "Mar. 8, 2017: National Academy of Sciences Re-Elects Vice President and Councilors". www.nasonline.org. Retrieved July 12, 2017.
  6. "Brandeis Life Sciences Faculty Bio". Archived from the original on February 24, 2020. Retrieved March 8, 2015.
  7. "eLife welcomes new Deputy Editor". May 2015. Retrieved August 17, 2016.
  8. "Communicating the latest advances in life science and biomedicine". eLife. Retrieved September 27, 2015.
  9. "Society for Neuroscience". www.sfn.org. Retrieved August 17, 2016.
  10. "Eve MARDER Doctors honoris causa upon proposal by faculties 2023. On the proposal of the School of Engineering" . Retrieved October 6, 2023.
  11. "Princeton awards five Honorary Doctorates 2022" . Retrieved May 27, 2022.
  12. "National Academy of Sciences Announces 2019 Award Winners". GEN – Genetic Engineering and Biotechnology News. January 24, 2019. Retrieved September 6, 2020.
  13. "TAU Honorary Doctorates 2017". Tel Aviv University. Retrieved July 12, 2017.
  14. "Brandeis neuroscientist Eve Marder '69 awarded prestigious Kavli Prize". BrandeisNOW. Retrieved May 14, 2019.
  15. "Eve Marder wins 2013 Gruber Neuroscience Prize". BrandeisNOW. Retrieved May 14, 2019.
  16. "Eve Marder to receive George A. Miller Prize in Cognitive Neuroscience". BrandeisNOW. Retrieved May 14, 2019.
  17. division-of-science (May 7, 2012). "Eve Marder wins 2012 Karl Spencer Lashley Award". blogs.brandeis.edu. Retrieved May 14, 2019.
  18. "Eve Marder, Ph.D. | Janelia Research Campus". www.janelia.org. Retrieved May 14, 2019.