Eve Marder

Last updated

Eve Marder
Eve Marder Kavli Prize Winner.webp
Born
New York City
Alma mater Brandeis University, University of California, San Diego
Known forDynamic clamp method, studies on the stomatogastric nervous system
AwardsMember of the US National Academy of Sciences, Kavli Prize in Neuroscience, National Medal of Science
Scientific career
FieldsNeuroscience
Institutions Brandeis University
Doctoral advisor Allen I. Selverston

Eve Marder is a University Professor and the Victor and Gwendolyn Beinfield Professor of Neuroscience at Brandeis University. At Brandeis, Marder is also a member of the Volen National Center for Complex Systems. Dr. Marder is known for her pioneering work on small neuronal networks which her team has interrogated via a combination of complementary experimental and theoretical techniques.

Contents

Marder is particularly well known in the community for her work on neural circuits in the crustacean stomatogastric nervous system (STNS), a small network of 30 neurons. She discovered that circuits are not “hard-wired” to produce a single output or behavior, but can be reconfigured by neuromodulators to produce many outputs and behaviors while still maintaining the integrity of the circuit. Her work has revolutionized the way scientists approach the studies of neural circuits with respect to the study of structural and functional behavior. The general principles that have resulted from her work are thought to be generally applicable to other neural networks, including those in humans. Marder has published 190 original research papers in refereed journals, and 179 review articles, book chapters, and opinion pieces.

Marder has received numerous awards for her pioneering work in the field including the National Medal of Science in 2023 and the Kavli Prize in 2016. In 2024, she was elected to the American Philosophical Society, and currently holds memberships in the Institute of Medicine, and National Academy of Sciences.

Career, research, and service

Marder was born in Manhattan and raised on the east coast. Although she loved biology from an early age, Marder has shared that she held very diverse academic interests prior to starting her undergraduate degree and in fact entered Brandeis University as an undergraduate in 1965 with a plan to study politics and become a lawyer. [1] She would instead find herself re-captivated by the world of biology and switched majors to Biology after her freshman year. Marder has shared that a pivotal turning point in her scientific self-development was writing a paper on schizophrenia during an abnormal psychology class during her junior year. Her subsequent library studies on inhibition in neural signaling solidified her career goals to become a neuroscientist and launched her on what would become her lifelong academic path. [1]

Marder received her B.A. from Brandeis University in 1969 [1] and subsequently completed Ph.D. studies at University of California, San Diego. It was during her time as a graduate student at UCSD that Marder would be introduced to the specific neural network, the lobster stomatogastric-ganglion system, that would prove pivotal for the rest of her academic career. [1] Marder's doctoral work on the role of acetylcholine in the lobster STG led to a single-author paper in Nature . [2] She completed her postdoctoral training at the University of Oregon in Eugene and the École Normale Supérieure in Paris, France. Marder subsequently began her independent research career at Brandeis University in 1978 as a faculty member in the department in Biology. In 1990 at Brandeis, she established one of the first undergraduate neuroscience programs in the United States. [3] During her time as a PI, she has mentored 29 Ph.D students and 52 postdoctoral fellows.

Her work on the 30 neurons that compose the crustacean stomatogastric ganglion (STG) produced many notable findings. She found that circuits can be modulated by many neuromodulators. She pioneered work on plasticity and homeostasis, revealing more about how the brain can change dramatically during learning and development yet remain structurally stable. Her recent work examining network variability among healthy individuals shows that a variety of network parameters can produce the same behavioral outcome, challenging a long-standing goal in theoretical neuroscience to model 'ideal' neurons and neural circuits. [4] This led her to study the effects of temperature and other global perturbations on neural circuits through the context of climate change and the crustacean STNS.

Dr. Marder has contributed to the field of neuroscience with working spanning various topics. One of her first focuses was on the neuromodulatory configuration of neuronal circuits. At the time she began working on motor pattern generation in small circuits, it was believed that neurons had relatively unchangeable properties. This belief led researchers at the time to create connectivity diagrams that would reveal immediately how the circuit functioned. Marder showed that the application of neuromodulatory substances and neurons can alter the properties of circuit components, resulting in a changed circuit output. Other areas of investigation have included models of homeostatic regulation of intrinsic excitability, which notably led to the models of synaptic scaling by Gina Turrigiano and Sacha Nelson. Her lab also addressed how a circuit may have multiple solutions, and how individuals may resolve the same challenge by adjusting different parameters. They discovered that it is possible to construct models with varying values for the density given ion channels and still produce very similar activity patterns. Notably, in the 1990s with Larry Abbott, she helped develop the dynamic clamp method, which enables an experimenter to induce mathematically modeled conductances into living neurons to view the output of theoretical circuits. [5]

Presently, Marder's lab has been focused on the effects of climate change and environmental factors on circuit performance. They have investigated the consequences of global perturbations on individual variability, investigating specific factors including temperature, pH, and salinity. Marder's group discovered that there are "cryptic" changes that occur within the circuit as a consequence of the individual animal's temperature history, though these changes are only revealed when the system is exposed to an environmental challenge. [6]

Marder has served on numerous editorial boards, and a broad range of review panels and working groups. Her service to the field of neuroscience has been extensive, with notable involvement in the BRAIN Initiative in 2013.

A book about Dr. Marder's life and scientific accomplishments was published in 2018, titled "Lessons from the Lobster: Eve Marder's Work in Neuroscience" by Charlotte Nassim. The book discusses Marder's early career, her scientific breakthroughs, impactful collaborations, and lessons she has learned throughout her long and successful career.

Select publications

Eve Marder has an extensive publication record in the areas of neuromodulation, computational neuroscience, the dynamics of small networks, and neuropeptides. A selection of works are listed below:

Notable awards

Related Research Articles

Central pattern generators (CPGs) are self-organizing biological neural circuits that produce rhythmic outputs in the absence of rhythmic input. They are the source of the tightly-coupled patterns of neural activity that drive rhythmic and stereotyped motor behaviors like walking, swimming, breathing, or chewing. The ability to function without input from higher brain areas still requires modulatory inputs, and their outputs are not fixed. Flexibility in response to sensory input is a fundamental quality of CPG-driven behavior. To be classified as a rhythmic generator, a CPG requires:

  1. "two or more processes that interact such that each process sequentially increases and decreases, and
  2. that, as a result of this interaction, the system repeatedly returns to its starting condition."
<span class="mw-page-title-main">Nancy Kanwisher</span> American neuroscientist

Nancy Gail Kanwisher FBA is the Walter A Rosenblith Professor of Cognitive Neuroscience in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology and a researcher at the McGovern Institute for Brain Research. She studies the neural and cognitive mechanisms underlying human visual perception and cognition.

<span class="mw-page-title-main">Carla J. Shatz</span> American neuroscientist

Carla J. Shatz is an American neurobiologist and an elected member of the American Academy of Arts and Sciences, the American Philosophical Society, the National Academy of Sciences, and the National Academy of Medicine.

<span class="mw-page-title-main">Gero Miesenböck</span>

Gero Andreas Miesenböck is an Austrian scientist. He is currently Waynflete Professor of Physiology and Director of the Centre for Neural Circuits and Behaviour (CNCB) at the University of Oxford and a fellow of Magdalen College, Oxford.

The Gruber Prize in Neuroscience, established in 2004, is one of three international awards worth US$500,000 made by the Gruber Foundation, a non-profit organization based in Yale University in New Haven, Connecticut.

<span class="mw-page-title-main">Cornelia Bargmann</span> American neurobiologist

Cornelia Isabella "Cori" Bargmann is an American neurobiologist. She is known for her work on the genetic and neural circuit mechanisms of behavior using C. elegans, particularly the mechanisms of olfaction in the worm. She has been elected to the National Academy of Sciences and had been a Howard Hughes Medical Institute investigator at UCSF and then Rockefeller University from 1995 to 2016. She was the Head of Science at the Chan Zuckerberg Initiative from 2016 to 2022. In 2012 she was awarded the $1 million Kavli Prize, and in 2013 the $3 million Breakthrough Prize in Life Sciences.

<span class="mw-page-title-main">Ann Graybiel</span> American neuroscientist

Ann Martin Graybiel is an Institute Professor and a faculty member in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology. She is also an investigator at the McGovern Institute for Brain Research. She is an expert on the basal ganglia and the neurophysiology of habit formation, implicit learning, and her work is relevant to Parkinson's disease, Huntington's disease, obsessive–compulsive disorder, substance abuse and other disorders that affect the basal ganglia.

<span class="mw-page-title-main">John O'Keefe (neuroscientist)</span> American–British neuroscientist

John O'Keefe, is an American-British neuroscientist, psychologist and a professor at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour and the Research Department of Cell and Developmental Biology at University College London. He discovered place cells in the hippocampus, and that they show a specific kind of temporal coding in the form of theta phase precession. He shared the Nobel Prize in Physiology or Medicine in 2014, together with May-Britt Moser and Edvard Moser; he has received several other awards. He has worked at University College London for his entire career, but also held a part-time chair at the Norwegian University of Science and Technology at the behest of his Norwegian collaborators, the Mosers.

The Karl Spencer Lashley Award is awarded by The American Philosophical Society as a recognition of research on the integrative neuroscience of behavior. The award was established in 1957 by a gift from Dr. Karl Spencer Lashley.

Laurence Frederick Abbott is an American theoretical neuroscientist, who is currently the William Bloor Professor of Theoretical Neuroscience at Columbia University, where he helped create the Center for Theoretical Neuroscience. He is widely regarded as one of the leaders of theoretical neuroscience, and is coauthor, along with Peter Dayan, on the first comprehensive textbook on theoretical neuroscience, which is considered to be the standard text for students and researchers entering theoretical neuroscience. He helped invent the dynamic clamp method alongside Eve Marder.

<span class="mw-page-title-main">Christopher A. Walsh</span> American neurological researcher

Christopher A. Walsh is the Bullard Professor of Neurology at Harvard Medical School, Chief of the Division of Genetics at Children's Hospital Boston, Investigator of the Howard Hughes Medical Institute, and the former Director of the Harvard–MIT MD–PhD Program. His research focuses on genetics of human cortical development and somatic mutations contributions to human brain diseases.

<span class="mw-page-title-main">Megan Carey</span> Neuroscientist

Megan Carey is a neuroscientist and Group Leader of the Neural Circuits and Behavior Laboratory at the Champalimaud Centre for the Unknown in Lisbon, Portugal. She is known for her work on how the cerebellum controls coordinated movement.

Tim P. Vogels is a professor of theoretical neuroscience and research leader at the Institute of Science and Technology Austria. He is primarily known for his scholarly contributions to the study of neuronal plasticity related to learning and memory in the brain.

Marla Beth Feller is the Paul Licht Distinguished Professor in Biological Sciences and Member of the Helen Wills Neuroscience Institute at the University of California, Berkeley. She studies the mechanisms that underpin the assembly of neural circuits during development. Feller is a Fellow of the American Association for the Advancement of Science, member of the American Academy of Arts and Sciences and member of the National Academy of Sciences.

Camilla Bellone is an Italian neuroscientist and assistant professor in the Department of Basic Neuroscience at the University of Geneva, in Switzerland. Bellone's laboratory explores the molecular mechanisms and neural circuits underlying social behavior and probes how defects at the molecular and circuit level give rise to psychiatric disease states such as Autism Spectrum Disorders.

<span class="mw-page-title-main">Ila Fiete</span> American physicist

Ila Fiete is an Indian–American physicist and computational neuroscientist as well as a Professor in the Department of Brain and Cognitive Sciences within the McGovern Institute for Brain Research at the Massachusetts Institute of Technology. Fiete builds theoretical models and analyses neural data and to uncover how neural circuits perform computations and how the brain represents and manipulates information involved in memory and reasoning.

<span class="mw-page-title-main">Kanaka Rajan</span> Indian-American computational neuroscientist

Kanaka Rajan is a computational neuroscientist in the Department of Neurobiology at Harvard Medical School and founding faculty in the Kempner Institute for the Study of Natural and Artificial Intelligence at Harvard University. Rajan trained in engineering, biophysics, and neuroscience, and has pioneered novel methods and models to understand how the brain processes sensory information. Her research seeks to understand how important cognitive functions — such as learning, remembering, and deciding — emerge from the cooperative activity of multi-scale neural processes, and how those processes are affected by various neuropsychiatric disease states. The resulting integrative theories about the brain bridge neurobiology and artificial intelligence.

<span class="mw-page-title-main">Claire Wyart</span> French biophysicist and neuroscientist

Claire Julie Liliane Wyart is a French neuroscientist and biophysicist, studying the circuits underlying the control of locomotion. She is a chevalier of the Ordre national du Mérite.

<span class="mw-page-title-main">Julijana Gjorgjieva</span> Macedonian-German professor

Julijana Gjorgjieva is a Macedonian-German professor of computational neuroscience at the Technical University of Munich and a research group leader at the Max Planck Institute for Brain Research. Her laboratory studies neural circuit formation.

Sonja Hofer is a German neuroscientist studying the neural basis of sensory perception and sensory-guided decision-making at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour. Her research focuses on how the brain processes visual information, how neural networks are shaped by experience and learning, and how they integrate visual signals with other information in order to interpret the outside world and guide behaviour. She received her undergraduate degree from the Technical University of Munich, her PhD at the Max Planck Institute of Neurobiology in Martinsried, Germany, and completed a post doctorate at the University College London. After holding an Assistant Professorship at the Biozentrum University of Basel in Switzerland for five years, she now is a group leader and Professor at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour since 2018.

References

  1. 1 2 3 4 "Eve Marder | Gruber Foundation". gruber.yale.edu. Retrieved May 14, 2019.
  2. Marder, Eve (October 25, 1974). "Acetylcholine as an excitatory neuromuscular transmitter in the stomatogastric system of the lobster". Nature. 251 (5477): 730–1. Bibcode:1974Natur.251..730M. doi:10.1038/251730a0. PMID   4154406. S2CID   4293312.
  3. "Society for Neuroscience". www.sfn.org. Retrieved August 17, 2016.
  4. Ganguli, Ishani (October 31, 2007). "Neuroscience: A gut feeling". Nature. 450 (7166): 21–23. doi: 10.1038/450021a . PMID   17972855.
  5. Gorman, James (November 10, 2014). "New York Times". Learning How Little We Know About the Brain. Retrieved March 8, 2015.
  6. Marder, Eve; Rue, Mara C. P. (December 15, 2021). "From the Neuroscience of Individual Variability to Climate Change". Journal of Neuroscience. 41 (50): 10213–10221. doi:10.1523/JNEUROSCI.1261-21.2021. ISSN   0270-6474. PMC   8672684 . PMID   34753741.
  7. "The American Philosophical Society Welcomes New Members for 2024". www.amphilsoc.org. Retrieved June 11, 2024.
  8. House, The White (October 24, 2023). "President Biden Honors Leading American Scientists, Technologists, and Innovators". The White House. Retrieved June 11, 2024.
  9. Fenz, Katherine (September 15, 2023). "Lily Jan and Eve Marder receive 2023 Pearl Meister Greengard Prize". The Rockefeller University.
  10. "Landis Award for Outstanding Mentorship Recipients | National Institute of Neurological Disorders and Stroke". www.ninds.nih.gov. September 1, 2023. Retrieved June 11, 2024.
  11. "Eve MARDER Doctors honoris causa upon proposal by faculties 2023. On the proposal of the School of Engineering" . Retrieved October 6, 2023.
  12. "Princeton awards five Honorary Doctorates 2022" . Retrieved May 27, 2022.
  13. "National Academy of Sciences Announces 2019 Award Winners". GEN – Genetic Engineering and Biotechnology News. January 24, 2019. Retrieved September 6, 2020.
  14. "TAU Honorary Doctorates 2017". Tel Aviv University. Retrieved July 12, 2017.
  15. "Brandeis neuroscientist Eve Marder '69 awarded prestigious Kavli Prize". BrandeisNOW. Retrieved May 14, 2019.
  16. "Eve Marder wins 2013 Gruber Neuroscience Prize". BrandeisNOW. Retrieved May 14, 2019.
  17. "Eve Marder to receive George A. Miller Prize in Cognitive Neuroscience". BrandeisNOW. Retrieved May 14, 2019.
  18. division-of-science (May 7, 2012). "Eve Marder wins 2012 Karl Spencer Lashley Award". blogs.brandeis.edu. Retrieved May 14, 2019.
  19. "Eve Marder, Ph.D. | Janelia Research Campus". www.janelia.org. Retrieved May 14, 2019.