Ferric EDTA

Last updated
Ferric EDTA
SFEDTD01.png
Names
Other names
(ethylenedinitrilo)tetraacetatoferrate
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 241-171-3
PubChem CID
  • InChI=1S/C10H16N2O8.Fe/c13-7(14)3-11(4-8(15)16)1-2-12(5-9(17)18)6-10(19)20;/h1-6H2,(H,13,14)(H,15,16)(H,17,18)(H,19,20);/q;+3/p-3
    Key: UOMQUZPKALKDCA-UHFFFAOYSA-K
  • C(CN(CC(=O)[O-])CC(=O)[O-])N(CC(=O)O)CC(=O)[O-].[Fe+3]
Properties
C10H12FeN2O8
Molar mass 344.057 g·mol−1
Appearanceyellow
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319
P264, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ferric EDTA is the coordination complex formed from ferric ions and EDTA. EDTA has a high affinity for ferric ions. It gives yellowish aqueous solutions. [1]

Contents

Synthesis and structure

Solutions of Fe(III)-EDTA are produced by combining ferrous salts and aqueous solutions of EDTA known as Jacobson's solution (cf. chemical equation (1) under Table (1)). [2]

Near neutral pH, the principal complex is [Fe(EDTA)(H2O)], although most sources ignore the aquo ligand. The [Fe(EDTA)(H2O)] anion has been crystallized with many cations, e.g., the trihydrate Na[Fe(EDTA)(H2O)].2H2O. [3] The salts as well as the solutions are yellow-brown. Provided the nutrient solution in which the [Fe(EDTA)(H2O)] complex will be used has a pH of at least 5.5, all the uncomplexed iron, as a result of incomplete synthesis reaction, will still change into the chelated ferric form. [4]

Uses

EDTA is used to solubilize iron(III) in water. In the absence of EDTA or similar chelating agents, ferric ions form insoluble solids and are thus not bioavailable. [1]

Together with pentetic acid (DTPA), EDTA is widely used for sequestering metal ions. Otherwise these metal ions catalyze the decomposition of hydrogen peroxide, which is used to bleach pulp in papermaking. Several million kilograms EDTA are produced for this purpose annually. [5]

Iron chelate is commonly used for agricultural purposes to treat chlorosis, a condition in which leaves produce insufficient chlorophyll. Iron and ligand are absorbed separately by the plant roots whereby the highly stable ferric chelate is first reduced to the less stable ferrous chelate. [6] In horticulture, iron chelate is often referred to as 'sequestered iron' and is used as a plant tonic, often mixed with other nutrients and plant foods (e.g. seaweed). It is recommended in ornamental horticulture for feeding ericaceous plants like Rhododendrons if they are growing in calcareous soils. The sequestered iron is available to the ericaceous plants, without adjusting the soil's pH, and thus, lime-induced chlorosis is prevented.

Ferric EDTA can be used as a component for the Hoagland solution or the Long Ashton Nutrient Solution. [7] According to Jacobson (1951), [2] the stability of ferric EDTA was tested by adding 5 ppm iron, as the complex, to Hoagland's solution at various pH values. No loss of iron occurred below pH 6. In addition to Jacobson's original recipe and a modified protocol by Steiner and van Winden (1970), [4] an updated version for producing the ferric EDTA complex by Nagel et al. (2020) [8] is presented in Table (1).

Jacobson's solution

Table (1) to prepare the ferric EDTA stock solution

ComponentQuantities in solution
g/Lmmol/L
FeSO4•7H2O25.0290
C10H16N2O8 (EDTA)26.3090
H2SO40.1962
KOH15.71280

The formation of Fe(III)-EDTA (FeY) can be described as follows:

FeSO4∙7H2O + K2H2Y + 1/4 O2 → K[FeY(H2O)].H2O + KHSO4 + 5.5 H2O (1) [8]

Iron chelate has also been used as a bait in the chemical control of slugs, snails and slaters in agriculture in Australia and New Zealand. They have advantages over other more generally poisonous substances used as their toxicity is more specific to molluscs. [9]

Ferric EDTA is used as a photographic bleach to convert silver metal into silver salts, that can later be removed.

Iron EDTA preparation methods

Iron EDTA can also be prepared using different sources of carbonates, chlorides and sulfates.

Iron(II)-EDTA using carbonates

Combination of iron carbonate, EDTA acid and sodium hydroxide gives the iron EDTA:

FeCO3 + C10H16N2O8 + 2 NaOH → C10H12FeNa2N2O8 • 2 H2O + CO2 + H2O

With this reaction % Fe can achieve 12.0 minimum in chelated form.

Iron(III)-EDTA using chlorides

Combination of iron chloride, EDTA acid and sodium hydroxide gives the iron EDTA:

FeCl3 + C10H16N2O8 + 4 NaOH → C10H12FeNaN2O8 + 3 NaCl + 4 H2O

This results in getting % Fe = 9.0 and to enrich the iron content sodium chloride to be separated using crystallization method and for this twice of iron chloride and seeding with iron EDTA powder after cooling to 40 °C results iron EDTA powder.

Iron(II)-EDTA using sulfates

Combination of iron sulfate, EDTA acid and sodium hydroxide gives the iron EDTA:

FeSO4 + C10H16N2O8 + 4 NaOH → C10H12FeNa2N2O8 + Na2SO4 + 2 H2O

This combination gives % Fe about 9.5.

Aside from EDTA, the chelating agent EDDHA is used to solubilize iron in water. It also can be used for the purposes of agriculture, accessible to plants. [10]

In iron chelation therapy, deferoxamine, has been used to treat excess iron stores, i.e. haemochromatosis. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

<span class="mw-page-title-main">Ammonium</span> Chemical compound

The ammonium cation is a positively charged polyatomic ion with the chemical formula NH+4 or [NH4]+. It is formed by the protonation of ammonia. Ammonium is also a general name for positively charged (protonated) substituted amines and quaternary ammonium cations, where one or more hydrogen atoms are replaced by organic or other groups.

<span class="mw-page-title-main">Iron(III)</span> The element iron in its +3 oxidation state

In chemistry, iron (III) refers to the element iron in its +3 oxidation state. In ionic compounds (salts), such an atom may occur as a separate cation (positive ion) denoted by Fe3+.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate ligand and a single central metal atom. These ligands are called chelants, chelators, chelating agents, or sequestering agents. They are usually organic compounds, but this is not a necessity.

<span class="mw-page-title-main">Ethylenediaminetetraacetic acid</span> Chemical compound

Ethylenediaminetetraacetic acid (EDTA), also called edetic acid after its own abbreviation, is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, water-insoluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to dissolve Fe- and Ca-containing scale as well as to deliver iron ions under conditions where its oxides are insoluble. EDTA is available as several salts, notably disodium EDTA, sodium calcium edetate, and tetrasodium EDTA, but these all function similarly.

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Murashige and Skoog medium</span> Growth medium used in plant cell culture

Murashige and Skoog medium is a plant growth medium used in the laboratories for cultivation of plant cell culture. MS0 was invented by plant scientists Toshio Murashige and Folke K. Skoog in 1962 during Murashige's search for a new plant growth regulator. A number behind the letters MS is used to indicate the sucrose concentration of the medium. For example, MS0 contains no sucrose and MS20 contains 20 g/L sucrose. Along with its modifications, it is the most commonly used medium in plant tissue culture experiments in the laboratory. However, according to recent scientific findings, MS medium is not suitable as a nutrient solution for deep water culture or hydroponics.

<span class="mw-page-title-main">Iron(III) oxide-hydroxide</span> Hydrous ferric oxide (HFO)

Iron(III) oxide-hydroxide or ferric oxyhydroxide is the chemical compound of iron, oxygen, and hydrogen with formula FeO(OH).

<span class="mw-page-title-main">Nitrilotriacetic acid</span> Chemical compound

Nitrilotriacetic acid (NTA) is the aminopolycarboxylic acid with the formula N(CH2CO2H)3. It is a colourless solid. Its conjugate base nitrilotriacetate is used as a chelating agent for Ca2+, Co2+, Cu2+, and Fe3+.

<span class="mw-page-title-main">Pentetic acid</span> DTPA: aminopolycarboxylic acid

Pentetic acid or diethylenetriaminepentaacetic acid (DTPA) is an aminopolycarboxylic acid consisting of a diethylenetriamine backbone with five carboxymethyl groups. The molecule can be viewed as an expanded version of EDTA and is used similarly. It is a white solid with limited solubility in water.

<span class="mw-page-title-main">Iron(III) nitrate</span> Chemical compound

Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.

<span class="mw-page-title-main">Tetrasodium EDTA</span> Chemical compound

Tetrasodium EDTA is the salt resulting from the neutralization of ethylenediaminetetraacetic acid with four equivalents of sodium hydroxide (or an equivalent sodium base). It is a white solid that is highly soluble in water. Commercial samples are often hydrated, e.g. Na4EDTA.4H2O. The properties of solutions produced from the anhydrous and hydrated forms are the same, provided they are at the same pH.

<span class="mw-page-title-main">Alkali soil</span> Soil type with pH > 8.5

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils.
Alkaline soils are basic, but not all basic soils are alkaline.

Bleaching of wood pulp is the chemical processing of wood pulp to lighten its color and whiten the pulp. The primary product of wood pulp is paper, for which whiteness is an important characteristic. These processes and chemistry are also applicable to the bleaching of non-wood pulps, such as those made from bamboo or kenaf.

<span class="mw-page-title-main">Iron(II)</span> The element iron in its +2 oxidation state

In chemistry, iron(II) refers to the element iron in its +2 oxidation state. In ionic compounds (salts), such an atom may occur as a separate cation (positive ion) denoted by Fe2+.

The Hoagland solution is a hydroponic nutrient solution that was newly developed by Hoagland and Snyder in 1933, modified by Hoagland and Arnon in 1938, and revised by Arnon in 1950. It is one of the most popular standard artificial solution compositions for growing plants, in the scientific world at least, with more than 20,000 citations listed by Google Scholar. The Hoagland solution provides all essential elements for plant nutrition and is appropriate for supporting normal growth of a large variety of plant species.

<span class="mw-page-title-main">Tetrasodium iminodisuccinate</span> Chemical compound

Tetrasodium iminodisuccinate is a sodium salt of iminodisuccinic acid, also referred to as N-(1,2-dicarboxyethyl)aspartic acid.

<span class="mw-page-title-main">Calconcarboxylic acid</span> Chemical compound

Calconcarboxylic acid is an azo dye that is used as an indicator for complexometric titrations of calcium with ethylenediaminetetraacetic acid (EDTA) in the presence of magnesium. Structurally, it is similar to eriochrome blue black R, which is obtained from calconcarboxylic acid by decarboxylation and reaction with sodium hydroxide.

References

  1. 1 2 Xue, Hanbin; Sigg, Laura; Kari, Franz Guenter (1995). "Speciation of EDTA in Natural Waters: Exchange Kinetics of Fe-EDTA in River Water". Environmental Science and Technology. 29 (1): 59–68. doi:10.1021/es00001a007. PMID   22200201.
  2. 1 2 Jacobson, L. (1951). "Maintenance of Iron Supply in Nutrient Solutions by a Single Addition of Ferric Potassium Ethylenediamine Tetra-Acetate". Plant Physiology. 26 (2): 411–413. doi:10.1104/pp.26.2.411. PMC   437509 . PMID   16654380.
  3. Solans, X.; Font Altaba, M.; Garcia-Oricain, J. (1984). "Crystal Structures of Ethylenediaminetetraacetato Metal Complexes. V. Structures Containing the [Fe(C10H12N2O8)(H2O)] Anion". Acta Crystallographica Section C. 40 (4): 635–638. doi:10.1107/S0108270184005151.
  4. 1 2 Steiner, A.A.; van Winden, H. (1970). "Recipe for Ferric Salts of Ethylenediaminetetraacetic Acid". Plant Physiology. 46 (6): 862–863. doi:10.1104/pp.46.6.862. PMC   396702 . PMID   16657561.
  5. J. Roger Hart "Ethylenediaminetetraacetic Acid and Related Chelating Agents" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi : 10.1002/14356007.a10_095
  6. Van Driel, W. (1964). "The effect of iron ethylenediaminetetraacetic acid on the growth and metabolism of tomato plants in water culture". Plant and Soil. 20: 85–104. doi:10.1007/BF01378101. S2CID   28252630.
  7. Hewitt E. J. (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, England: Commonwealth Agricultural Bureaux, pp. 547. Technical Communication No. 22 (Revised 2nd Edition) of the Commonwealth Bureau of Horticulture and Plantation Crops.
  8. 1 2 Nagel, K.A.; Lenz, H.; Kastenholz, B.; Gilmer, F.; Averesch, A.; Putz, A.; Heinz, K.; Fischbach, A.; Scharr, H.; Fiorani, F.; Walter, A.; Schurr, U. (2020). "The platform GrowScreen-Agar enables identification of phenotypic diversity in root and shoot growth traits of agar grown plants". Plant Methods. 16 (89): 1–17. doi: 10.1186/s13007-020-00631-3 . PMC   7310412 . PMID   32582364.
  9. Young CL, Armstrong GD (2001). "Slugs, Snails and Iron based Baits: An Increasing Problem and a Low Toxic Specific Action Solution". Australian Society of Agronomy. The Regional Institute. Retrieved 2009-10-18.
  10. Batra, P.P.; Maier, R.H. (1964). "Isolation and determination of the ferric iron chelate of ethylenediamine di(o-hydroxyphenylacetic acid) in plant tissues". Plant and Soil. 20: 105–115. doi:10.1007/BF01378102. S2CID   9873911.
  11. "Hemochromatosis: Monitoring and Treatment". National Center on Birth Defects and Developmental Disabilities (NCBDDD). 2007-11-01. Archived from the original on May 18, 2009. Retrieved 2009-10-18.